

(D)

Maritime Tech



Research Article

## **Maritime Technology and Research**

https://so04.tci-thaijo.org/index.php/MTR

# **Roughness coefficient of polyurethane-bonded revetment**

### Tanapon Rattharangsri<sup>1</sup>, Effi Helmy Ariffin<sup>2,3,\*</sup>, Nor Aslinda Awang<sup>4</sup> and Qi Hongshuai<sup>5</sup>

<sup>1</sup>Vigor Merger Co., Ltd., Bangkok 10600, Thailand

 <sup>2</sup>School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
<sup>3</sup>Institute of Oceanography and Environment, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
<sup>4</sup>National Hydraulic Research Institute of Malaysia, Ministry of Land, Water and Natural Resources, Selangor 43300, Malaysia

<sup>5</sup>Third Institute of Oceanography, Ministry of Natural Resource, Xiamen, Fujian 361005, China

| Article information           | Abstract                                                                               |
|-------------------------------|----------------------------------------------------------------------------------------|
| Received: March 13, 2019      | This article analyzed the roughness coefficient of polyurethane-bonded revetment       |
| Revised: April 17, 2019       | (PBR) by laboratory testing. A wave basin was constructed, with a regular wave         |
| Accepted: May 6, 2019         | generator installed. Three types of revetment were constructed at the same time in the |
|                               | wave basin. Scales were painted on the revetments. Video cameras were installed to     |
| Keywords                      | record the wave run-up. Measurments of wave height and wave period during the          |
| Coastal protection structure, | tests were not necessary, since a run-up estimation was entirely based on a linear     |
| Coastal erosion,              | relationship. The PBR's roughness coefficient could be interpolated from those of      |
| Alternative revetment,        | rock and concrete revetments. Three revetment slopes were tested. The roughness        |
| Polyurethane revetment        | coefficient of the PBR was found to be in the range of 0.632 - 0.674, with a standard  |
|                               | deviation of 0.042 - 0.053. Following this identification of the roughness coefficient |
|                               | of PBR, coastal engineers can now design revetment crest elevations with confidence.   |
|                               | All rights reserved                                                                    |

#### 1. Introduction

Coastal erosion is a problem that can be found in sea-connected nations (Cao and Wong, 2007; Cicin-Sain and Knecht, 1998; Cellone et al., 2016; Fitton et al., 2016; Houwing, 2000; Lin, 1996). Coastal protection is necessary, because it mitigates damage to buildings, infrastructures, and other facilities that are important to coastal communities (Saengsupavanich et al., 2008; Saengsupavanich, 2013). Coastal protection must rely on the understanding of physical, environmental, and social surroundings. Different locations have different environments, therefore demanding different coastal protection measures. A certain coastal protection method suitable for one site may not be appropriate for another area (US Army Corps of Engineers, 2006).

Thailand has a coastline longer than 2,600 km, 1,660 of which border the Gulf of Thailand, with the rest bordering the Andaman Sea (Sudara, 1999). Thailand's shoreline is diverse, comprising sandy, rocky, and muddy coasts. Current erosion protection measures can be divided into 2 categories: hard and soft options (Williams et al., 2019). The hard option is related to constructing engineering structures to resist wave force, such as offshore breakwaters, groins, or revetments (Saengsupavanich, 2017). The soft option deals with coastal erosion with non-structural

<sup>&</sup>lt;sup>\*</sup>Corresponding author: Institute of Oceanography and Environment, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia

*E-mail address: effihelmy@umt.edu.my* 

measures, such as mangrove reforestation, set-back lines, and settlement retreats (Cicin-Sain & Knecht, 1998). Coastal inhabitants who suffer from coastal erosion usually prefer the structural measure, since it is effective and can protect their properties immediately. However, constructing coastal revetments may result in reduced scenic beauty. Rock quarry may not be available in some remote area or islands. As the result, a polyurethane-bonded revetment (PBR) has been developed to solve such problems.

PBR is a coastal protection structure constructed from small aggregates bonded with liquid polyurethane (**Figure 1**). Its appearance looks like pebbles on a swimming pool floor. Sand particles can be plastered on the PBR surface, making it look similar to a natural sandy beach. Although there is a lot of literature on other types of coastal revetment (US Army Corps of Engineers, 2006), there is very little about PBR. This article focuses on the surface roughness of PBR, which is one of the fundamental design parameters. The surface roughness leads to estimations of wave run-up and overtopping discharge, which will determine the revetment's crest elevation, as well as the design of the drainage system for the overtopping wave.



Figure 1 A polyurethane-bonded revetment in Thailand.

### 2. Methodology

This research attempted to determine the roughness coefficient  $(\gamma_r)$  of PBR. This section is divided into 2 parts. The first part explains related concepts about wave run-up; the second part deals with an experimental setup.

### **2.1** Wave run-up theory and how to estimate the $\gamma_r$ of the PBR

When waves hit a revetment, the waves flow up the revetment's slope. Wave run-up is defined as a vertical distance between a still water level and the highest point where water can reach during the wave uprush. The wave run-up level is one of the most important factors affecting the design of coastal structures, because it determines the design crest level of the structure in cases where no (or only marginal) overtopping is acceptable. Empirical formulas have been proposed by many researchers (Ahrens, 1981; Battjes, 1974; Van Oorschot and d'Angremond, 1968) in the form of linear equation with reduction factors {Eq. (1)}.

$$\frac{R_{ui\%}}{H_s} = (A\xi + C)\gamma_r\gamma_b\gamma_h\gamma_\beta \tag{1}$$

when  $R_{ui\%}$  is run-up level exceeded by i percent of the incident waves,  $H_s$  is significant wave height at the top of the structure (m),  $\xi$  is a surf-similarity parameter,  $\gamma_r$  is a reduction factor related to the structure's surface roughness,  $\gamma_b$  is a reduction factor related to the structure's berm,  $\gamma_h$  is a reduction factor for influence of shallow-water conditions where the wave height distribution deviates from the Rayleigh distribution, and  $\gamma_{\beta}$  is a reduction factor for influence of angle of incidence of the waves (US Army Corps of Engineers, 2006).

The wave run-up depends on surface roughness. de Waal and van der Meer (1992) recommended the  $\gamma_r$  of a rock revetment of 0.5 - 0.55, while a concrete revetment has the  $\gamma_r$  of 1.0. It can be noticed from Eq. (1) that the run-up estimation is entirely based on a linear relationship. If both ends of the linear curve are known, it is possible to interpolate the  $\gamma_r$  of the PBR (**Figure 2**). This approach is valid only if all other parameters are the same.



**Figure 2** A concept to estimate the  $\gamma_r$  of the PBR.

### 2.2 Laboratory experiment

A wave basin of  $8.94 \times 19.94 \times 1.5 \text{ m}^3$  (wide×long×deep) was constructed with a regular wave generator installed (**Figure 3**). Three types of revetment were constructed at the same time in the wave basin. Since the wave basin's width was 8.94 m, each type of revetment was 2.98 m (**Figure 4**), big enough to allow the authors to clearly record the run-up data. Scales were painted on the revetments. Three video cameras were installed along each side of the basin to record the wave run-up. Three revetment slopes, being 1:1, 1:1.5, and 1:2 (vertical:horizontal), were tested. One hundred regular waves were generated for each slope to anyayze the run-up (**Figure 5**).



Figure 3 A wave basin of 8.94×19.94×1.5 m<sup>3</sup> (wide×long×deep) (picture taken 1 November 2018).



Figure 4 Three types of revetment in the same wave basin (picture taken 13 November 2018).



Figure 5 Wave run-up on different revetments at the same time (picture taken 25 November 2018).

#### 3. Results

The concept of testing 3 types of revetment at the same time was to neglect other parameters in Eq. (1). It was not necessary to know wave height in the wave basin, since the wave parameters were similar. What was different was only the roughness coefficient. The results are shown in **Table 1**. Recorded data can be found in **Appendixs 1 - 3**.

It was revealed that the wave run-up of the PBR was greater than that of the rock revetment, but less than that of the concrete surface. This led to an implication that the roughness of the polyurethane-bonded aggregate was able to reduce the run-up almost as much as the rock surface. The mean value of  $\gamma_r$  of the PBR was in the range of 0.632 - 0.674, with the standard deviation of 0.042 - 0.053.

| Slope | Mean value of $\gamma_r$ of the PBR | Standard deviation |
|-------|-------------------------------------|--------------------|
| 1:1   | 0.632                               | 0.049              |
| 1:1.5 | 0.632                               | 0.053              |
| 1:2   | 0.674                               | 0.042              |

**Table 1** Mean value of  $\gamma_r$  of the PBR.

### 4. Discussion

Polyurethane-bonded revetment (PBR) is an alternative coastal protection structure to common revetments constructed from rocks or concrete. Its advantages include easy constructibility and an appearance that, when covered with sand, looks similar to a natural sandy beach. Its application is still limited. One of the reasons that it has not been applied is the lack of related research. Various design parameters of the PBR are still being assessed. This research focuses on the roughness coefficient of PBR.

The design of coastal revetment involves many structural components. Crest elevation plays an important role in limiting damage that may occur to properties on shore. The rougher the revetment surface, the lesser the roughness coefficient, and the lower the crest elevation. Many researchers have also proposed roughness coefficients for alternative revetments (van Steeg et al.,

2016; van Steeg et al., 2018). Liebisch et al. (2012) studied the effect of the porosity of revetments on wave run-up and run-down, wave-induced loads on and beneath the revetment, and wave-induced pore pressures in the sand core under the revetment. Their results found that, with increasing porosity, the wave run-up height decreases significantly, due to the infiltration of the up-running water mass into the porous structure and the corresponding higher turbulences and energy dissipation. The highest wave run-up for the impermeable revetment was reduced by more than 20 % on the high porous revetment. The results of this study revealed that the roughness of the PBR is less than that of rock revetment, but greater than concrete revetment. Therefore, the crest elevation of the PBR can be lowered, compared to the concrete structure. The roughness coefficient of the PBR is found to be in the range of 0.632 - 0.674, with a standard deviation of 0.042 - 0.053, while the roughness coefficient of the rock revetment is theoretically 0.55, and the roughness coefficient of the concrete revetment is theoretically 1.0 (de Waal & van der Meer, 1992). In some areas where there is no rock quarry, big rocks may not be possible to obtain. A PBR may be preferred to a concrete revetment, based on the criteria of wave dissipation effectiveness and Nature-like beauty. Future research on PBR is still needed, such as its durability in tropical areas, ultraviolet and salinity resistance, microplastic dissolution, and toxicity to marine animals and plants.

This reseach focuses only on the wave run-up, which is only one of the design components. Succesful coastal protection must fullfil engineering, social, environmental, and financial criteria. When choosing what type of revetment is suitable for a certain site, other factors may come into consideration. Construction costs, stakeholders' acceptance, environmental impacts, maintenance availability, and other factors should be considered as well. Coastal engineers must select the most appropriate coastal protection structure that can fulfill most requirements. Sometimes, the most suitable coastal protection structure may not be the cheapest structure, nor the most hydraulically effective one.

#### 5. Conclusions

Polyurethane-bonded revetment (PBR) can be useful when coastal engineers must design a coastal protection structure at a remote location where other construction materials are unavailable. PBR's capability to reduce wave run-up is better than that of concrete revetment. Other advantages of PBR include its appearance, its constructability, its material availability, and its transportability. After the roughness coefficient of PBR is found, coastal engineers can now design revetment crest elevations with confidence.

#### Acknowledgment

The authors are grateful for all supporting staff. The research was funded by the "Talent Mobility" program in 2017 (3<sup>rd</sup> round), under the Office of the Higher Education Commission and the National Science Technology and Innovation Policy Office, Thailand. The funded project name was "Coastal protection structure from Polyurethane; effectiveness, durability, and environment".

#### References

- Ahrens, J. P. (1981). Irregular wave runup on smooth slopes. Technical Aid No. 81-17, U.S. Army Engineer Waterways Experiment Station, Coastal Engineering Research Center, Vicksburg, MS.
- Battjes, J. A. (1974). Computation of set-up, longshore currents, run-up, and overtopping due to wind-generated wave. Report 74-2, Committee on Hydraulics, Department of Civil Engineering, Delft University of Technology, Netherlands.
- Cao, W., & Wong, M. H. (2007). Current status of coastal zone issues and management in China: A review. *Environment International*, 33(7), 985-992. doi:10.1016/j.envint.2007.04.009

- Cellone, F., Carol, E., & Tosi, L. (2016). Coastal erosion and loss of wetlands in the middle Río de la Plata estuary (Argentina). *Applied Geography*, 76, 37-48. doi:10.1016/j.apgeog.2016.09.014
- Cicin-Sain, B., & Knecht, R. W. (1998). *Integrated coastal and ocean management: Concepts and practices*. Washington DC, USA: Island Press.
- de Waal, J. P., & van der Meer, J. W. (1992). *Wave run-up and overtopping on coastal structures*. In Proceedings of the 23<sup>rd</sup> International Coastal Engineering Conference. American Society of Civil Engineers, pp. 1758-1771.
- Fitton J. M., Hansom, J. D., & Rennie, A. F. (2016). A national coastal erosion susceptibility model for Scotland. *Ocean & Coastal Management, 132,* 80-89. doi:10.1016/j.ocecoaman.2016.08.018
- Houwing, E. (2000). Morphodynamic development of intertidal mudflats: Consequences for the extension of the pioneer zone. *Continental Shelf Research*, 20(12-13), 1735-1748. doi:10.1016/S0278-4343(00)00045-5
- Liebisch, S., Huerta, J. C. A., Kortenhaus, A., & Oumeraci, H. (2012). Bonded porous revetments: Effect of porosity on wave-induced loads and hydraulic performance. *Coastal Engineering Proceedings*, 33, 1-15. doi:10.9753/icce.v33.structures.45
- Lin, J. (1996). Coastal modification due to human influence in south-western Taiwan. *Quaternary Science Reviews, 15*(8-9), 895-900. doi:10.1016/S0277-3791(96)00060-1
- Saengsupavanich, C. (2013). Erosion protection options of a muddy coastline in Thailand: Stakeholders' shared responsibilities. *Ocean & Coastal Management, 83*, 81-90. doi:10.1016/j.ocecoaman.2013.02.002
- Saengsupavanich, C. (2017). Coastal revetment design process in Thailand. WIT Transactions on the Built Environment, 170, 33-44. doi:10.2495/CC170041
- Saengsupavanich, C., Seenprachawong, U., Gallardo, W. G., Shivakoti, G. P. (2008). Port-induced erosion prediction and valuation of a local recreational beach. *Ecological Economics*, 67(1), 93-103. doi:10.1016/j.ecolecon.2007.11.018
- Sudara, S. (1999). Who and what is to be involved in successful coastal zone management: A Thailand example. *Ocean & Coastal Management, 42*(1), 39-47. doi:10.1016/S0964-5691(98)00084-2
- US Army Corps of Engineers. (2006). Coastal engineering manual. Washington DC, USA.
- van Oorschot, J. H., & Angremond, K. (1968). *The effect of wave energy spectra on wave run-up*. In Proceedings of the 11<sup>th</sup> International Coastal Engineering Conference, American Society of Civil Engineers, pp. 886-900.
- van Steeg, P., Breteler, M. K., & Provoost, Y. (2016). Large-scale physical model test to determine influence factor of roughness for wave run-up of channel shaped block revetments. In Proceedings of the 6<sup>th</sup> International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science, Canada, pp. 1-10.
- van Steeg, P., Joosten, R. A., & Steendam, G. J. (2018). Physical model tests to determine the roughness of stair shaped revetments. In Proceedings of the 3<sup>rd</sup> International Conference on Protection against Overtopping, UK, pp. 1-8.
- Williams, A. T., Rangel-Buitrago, N., Pranzini, E., & Anfuso, G. (2018). The management of coastal erosion. Ocean & Coastal Management, 156, 4-20. doi:10.1016/j.ocecoaman.2017.03.022

.

\_

| ID     of concrete revenment (cm)     of PBR (cm)     of rock revenment (cm)     Cardinate 7,<br>Cardinate 7,<br>1       1     73.292     55.464     45.560     0.694       3     72.301     55.464     47.540     0.694       4     76.263     53.483     46.550     0.655       5     73.292     53.483     49.521     0.625       6     77.253     53.483     51.502     0.585       7     75.272     52.493     48.531     0.632       9     72.301     54.473     46.550     0.6688       10     78.244     53.483     46.550     0.648       11     69.330     55.464     45.560     0.738       12     71.311     52.493     50.512     0.589       14     68.339     54.473     52.453     0.606       15     73.292     53.483     50.512     0.669       16     77.253     55.464     48.531     0.659       19     73.292     54.473     49.521 <t< th=""><th>ID</th><th>Wave run-up</th><th>Wave run-up</th><th>Wave run-up</th><th>Coloulated M</th></t<> | ID | Wave run-up                | Wave run-up | Wave run-up            | Coloulated M          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------|-------------|------------------------|-----------------------|
| 1 $73.292$ $55.464$ $45.560$ $0.711$ 2 $71.311$ $54.473$ $46.550$ $0.694$ 4 $76.263$ $53.483$ $46.550$ $0.655$ 5 $73.292$ $53.483$ $49.521$ $0.625$ 6 $77.253$ $53.483$ $49.521$ $0.625$ 7 $75.272$ $52.493$ $51.502$ $0.585$ 7 $75.272$ $52.493$ $48.531$ $0.632$ 9 $72.301$ $54.473$ $46.550$ $0.648$ 10 $78.244$ $53.483$ $46.550$ $0.648$ 11 $69.330$ $55.464$ $45.560$ $0.738$ 12 $71.311$ $52.493$ $48.531$ $0.628$ 13 $73.292$ $52.493$ $50.512$ $0.589$ 14 $68.339$ $54.473$ $52.493$ $0.606$ 15 $73.292$ $53.483$ $50.512$ $0.609$ 16 $77.253$ $56.454$ $49.521$ $0.663$ 17 $78.244$ $57.445$ $47.540$ $0.695$ 18 $77.253$ $55.464$ $48.531$ $0.667$ 21 $73.292$ $57.445$ $50.512$ $0.687$ 22 $75.272$ $56.454$ $47.540$ $0.726$ 23 $71.311$ $57.445$ $49.521$ $0.614$ 24 $77.253$ $57.445$ $51.502$ $0.654$ 25 $73.292$ $54.473$ $49.521$ $0.604$ 26 $71.311$ $57.445$ $49.521$ $0.614$ 27 $75.272$ $53.483$                                                 | ID | of concrete revetment (cm) | of PBR (cm) | of rock revetment (cm) | Calculated $\gamma_r$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1  | 73.292                     | 55.464      | 45.560                 | 0.711                 |
| 372.301 $55.464$ $47.540$ $0.694$ 476.263 $53.483$ $46.550$ $0.655$ 573.292 $53.483$ $49.521$ $0.625$ 677.253 $53.483$ $51.502$ $0.585$ 775.272 $52.493$ $48.531$ $0.632$ 972.301 $54.473$ $46.550$ $0.648$ 1078.244 $53.483$ $46.550$ $0.648$ 1169.330 $55.464$ $45.560$ $0.738$ 1271.311 $52.493$ $50.512$ $0.589$ 1373.292 $52.493$ $50.512$ $0.609$ 1573.292 $53.483$ $50.512$ $0.663$ 1677.253 $56.454$ $49.521$ $0.6663$ 1778.244 $57.445$ $47.540$ $0.695$ 1877.253 $55.464$ $48.531$ $0.669$ 1973.292 $54.473$ $49.521$ $0.6643$ 2070.320 $56.454$ $47.540$ $0.726$ 2173.292 $57.445$ $50.512$ $0.687$ 2275.272 $56.454$ $47.540$ $0.695$ 2371.311 $57.445$ $49.521$ $0.604$ 2477.253 $57.445$ $51.502$ $0.654$ 2573.292 $57.445$ $51.502$ $0.664$ 2671.311 $53.483$ $49.521$ $0.604$ 2775.272 $53.483$ $49.521$ $0.604$ 2874.282 $52.493$ $49.521$ $0.614$ <                                                                                                  | 2  | 71.311                     | 54.473      | 46.550                 | 0.694                 |
| 4 $76.263$ $53.483$ $46.550$ $0.655$ 5 $73.292$ $53.483$ $49.521$ $0.625$ 6 $77.253$ $53.483$ $51.502$ $0.585$ 7 $75.272$ $52.493$ $48.531$ $0.632$ 9 $72.301$ $54.473$ $46.550$ $0.648$ 10 $78.244$ $53.483$ $46.550$ $0.648$ 11 $69.330$ $55.464$ $45.560$ $0.738$ 12 $71.311$ $52.493$ $48.531$ $0.628$ 13 $73.292$ $52.493$ $50.512$ $0.589$ 14 $68.339$ $54.473$ $52.493$ $0.606$ 15 $73.292$ $53.483$ $50.512$ $0.609$ 16 $77.253$ $56.454$ $49.521$ $0.663$ 17 $78.244$ $57.445$ $47.540$ $0.695$ 18 $77.253$ $56.454$ $47.540$ $0.695$ 21 $73.292$ $57.445$ $50.512$ $0.687$ 22 $75.272$ $56.454$ $47.540$ $0.695$ 23 $71.311$ $57.445$ $51.502$ $0.654$ 24 $77.253$ $57.445$ $51.502$ $0.664$ 25 $73.292$ $54.473$ $48.531$ $0.658$ 26 $71.311$ $53.483$ $49.521$ $0.614$ 27 $75.272$ $53.483$ $49.521$ $0.614$ 28 $74.282$ $52.493$ $49.521$ $0.614$ 29 $82.205$ $53.483$ $49.521$ $0.614$ 27 $75.272$ $53.4$                                                | 3  | 72.301                     | 55.464      | 47.540                 | 0.694                 |
| 5 $73.292$ $53.483$ $49.521$ $0.625$ 6 $77.253$ $53.483$ $51.502$ $0.585$ 7 $75.272$ $52.493$ $51.502$ $0.569$ 8 $70.320$ $52.493$ $48.531$ $0.632$ 9 $72.301$ $54.473$ $46.550$ $0.648$ 10 $78.244$ $53.483$ $46.550$ $0.648$ 11 $69.330$ $55.464$ $45.560$ $0.738$ 12 $71.311$ $52.493$ $50.512$ $0.589$ 14 $68.339$ $54.473$ $52.493$ $0.606$ 15 $73.292$ $52.493$ $50.512$ $0.609$ 16 $77.253$ $56.454$ $49.521$ $0.663$ 17 $78.244$ $57.445$ $47.540$ $0.695$ 18 $77.253$ $55.464$ $48.531$ $0.659$ 19 $73.292$ $57.445$ $50.512$ $0.664$ 20 $70.320$ $56.454$ $47.540$ $0.726$ 21 $73.292$ $57.445$ $50.512$ $0.667$ 22 $75.272$ $56.454$ $47.540$ $0.695$ 23 $71.311$ $57.445$ $51.502$ $0.654$ 24 $77.253$ $57.445$ $51.502$ $0.654$ 25 $73.292$ $54.473$ $49.521$ $0.604$ 28 $74.282$ $52.493$ $49.521$ $0.605$ 30 $78.244$ $53.483$ $49.521$ $0.605$ 31 $79.234$ $53.483$ $49.521$ $0.605$ 33 $69.330$ $56.4$                                                | 4  | 76.263                     | 53.483      | 46.550                 | 0.655                 |
| 6 $77.253$ $53.483$ $51.502$ $0.585$ 7 $75.272$ $52.493$ $51.502$ $0.569$ 8 $70.320$ $52.493$ $48.531$ $0.632$ 9 $72.301$ $54.473$ $46.550$ $0.688$ 10 $78.244$ $53.483$ $46.550$ $0.648$ 11 $69.330$ $55.464$ $45.560$ $0.738$ 12 $71.311$ $52.493$ $48.531$ $0.628$ 13 $73.292$ $52.493$ $50.512$ $0.589$ 14 $68.339$ $54.473$ $52.493$ $0.606$ 15 $73.292$ $53.483$ $50.512$ $0.609$ 16 $77.253$ $56.454$ $49.521$ $0.663$ 17 $78.244$ $57.445$ $47.540$ $0.695$ 18 $77.253$ $55.464$ $48.531$ $0.659$ 19 $73.292$ $54.473$ $49.521$ $0.664$ 20 $70.320$ $56.454$ $47.540$ $0.695$ 21 $73.292$ $57.445$ $51.502$ $0.654$ 22 $75.272$ $56.454$ $47.540$ $0.695$ 23 $71.311$ $57.445$ $51.502$ $0.654$ 24 $77.253$ $57.445$ $51.502$ $0.654$ 25 $73.292$ $54.473$ $49.521$ $0.604$ 26 $71.311$ $53.483$ $49.521$ $0.605$ 30 $78.244$ $53.483$ $49.521$ $0.605$ 31 $79.234$ $53.483$ $49.521$ $0.605$ 33 $69.330$ $56.$                                                | 5  | 73.292                     | 53.483      | 49.521                 | 0.625                 |
| 775.27252.49351.5020.569870.32052.49348.5310.632972.30154.47346.5500.6881078.24453.48346.5500.6481169.33055.46445.5600.7381271.31152.49348.5310.6281373.29252.49350.5120.5891468.33954.47352.4930.6061573.29253.48350.5120.6091677.25356.45449.5210.6631778.24457.44547.5400.6951877.25355.46448.5310.6591973.29254.47349.5210.6442070.32056.45447.5400.6952173.29257.44550.5120.6872275.27256.45447.5400.6952371.31157.44549.5210.7142477.25357.44551.5020.6542573.29254.47348.5310.6582671.31153.48349.5210.6142775.27253.48349.5210.6142874.28252.49349.5210.6142982.20553.48349.5210.6053078.24453.48349.5210.6063179.23453.48349.5210.6103276.26355.46446.5500                                                                                                                                                                                                                                                                                                    | 6  | 77.253                     | 53.483      | 51.502                 | 0.585                 |
| 870.320 $52.493$ $48.531$ $0.632$ 972.301 $54.473$ $46.550$ $0.688$ 10 $78.244$ $53.483$ $46.550$ $0.648$ 11 $69.330$ $55.464$ $45.560$ $0.738$ 12 $71.311$ $52.493$ $48.531$ $0.628$ 13 $73.292$ $52.493$ $50.512$ $0.589$ 14 $68.339$ $54.473$ $52.493$ $0.606$ 15 $73.292$ $53.483$ $50.512$ $0.609$ 16 $77.253$ $56.454$ $49.521$ $0.663$ 17 $78.244$ $57.445$ $47.540$ $0.695$ 18 $77.253$ $55.464$ $48.531$ $0.659$ 19 $73.292$ $54.473$ $49.521$ $0.644$ 20 $70.320$ $56.454$ $47.540$ $0.726$ 21 $73.292$ $57.445$ $50.512$ $0.687$ 22 $75.272$ $56.454$ $47.540$ $0.695$ 23 $71.311$ $57.445$ $49.521$ $0.714$ 24 $77.253$ $57.445$ $51.502$ $0.654$ 25 $73.292$ $54.473$ $48.531$ $0.658$ 26 $71.311$ $53.483$ $49.521$ $0.614$ 27 $75.272$ $53.483$ $47.540$ $0.646$ 28 $74.282$ $52.493$ $49.521$ $0.604$ 29 $82.205$ $53.483$ $49.521$ $0.605$ 30 $78.244$ $53.483$ $49.521$ $0.605$ 31 $79.234$ $53.46$                                                  | 7  | 75.272                     | 52.493      | 51.502                 | 0.569                 |
| 972.301 $54.473$ $46.550$ $0.688$ 1078.244 $53.483$ $46.550$ $0.648$ 11 $69.330$ $55.464$ $45.560$ $0.738$ 1271.311 $52.493$ $48.531$ $0.628$ 1373.292 $52.493$ $50.512$ $0.589$ 14 $68.339$ $54.473$ $52.493$ $0.606$ 1573.292 $53.483$ $50.512$ $0.609$ 1677.253 $56.454$ $49.521$ $0.663$ 1778.244 $57.445$ $47.540$ $0.695$ 1877.253 $55.464$ $48.531$ $0.659$ 1973.292 $54.473$ $49.521$ $0.644$ 2070.320 $56.454$ $47.540$ $0.726$ 2173.292 $57.445$ $50.512$ $0.687$ 22 $75.272$ $56.454$ $47.540$ $0.695$ 2371.311 $57.445$ $51.502$ $0.654$ 24 $77.253$ $57.445$ $51.502$ $0.654$ 25 $73.292$ $54.473$ $48.531$ $0.658$ 26 $71.311$ $53.483$ $47.540$ $0.644$ 27 $75.272$ $53.483$ $47.540$ $0.644$ 28 $74.282$ $52.493$ $49.521$ $0.604$ 29 $82.205$ $53.483$ $49.521$ $0.604$ 29 $82.205$ $53.483$ $49.521$ $0.605$ 30 $78.244$ $53.483$ $49.521$ $0.605$ 31 $79.234$ $53.483$ $49.521$                                                                     | 8  | 70.320                     | 52.493      | 48.531                 | 0.632                 |
| 10 $78.244$ $53.483$ $46.550$ $0.648$ $11$ $69.330$ $55.464$ $45.560$ $0.738$ $12$ $71.311$ $52.493$ $48.531$ $0.628$ $13$ $73.292$ $52.493$ $50.512$ $0.589$ $14$ $68.339$ $54.473$ $52.493$ $0.606$ $15$ $73.292$ $53.483$ $50.512$ $0.609$ $16$ $77.253$ $56.454$ $49.521$ $0.663$ $17$ $78.244$ $57.445$ $47.540$ $0.695$ $18$ $77.253$ $55.464$ $48.531$ $0.659$ $19$ $73.292$ $54.473$ $49.521$ $0.644$ $20$ $70.320$ $56.454$ $47.540$ $0.726$ $21$ $73.292$ $57.445$ $50.512$ $0.687$ $22$ $75.272$ $56.454$ $47.540$ $0.695$ $23$ $71.311$ $57.445$ $59.512$ $0.684$ $24$ $77.253$ $57.445$ $50.512$ $0.654$ $25$ $73.292$ $54.473$ $48.531$ $0.658$ $26$ $71.311$ $53.483$ $49.521$ $0.614$ $27$ $75.272$ $53.483$ $49.521$ $0.604$ $29$ $82.205$ $53.483$ $49.521$ $0.605$ $30$ $78.244$ $53.483$ $49.521$ $0.604$ $29$ $82.205$ $53.483$ $49.521$ $0.604$ $29$ $82.205$ $53.483$ $49.521$ $0.605$ $31$ $79.234$ $55.464$ $46.550$ $0.731$                  | 9  | 72.301                     | 54.473      | 46.550                 | 0.688                 |
| 11 $69.330$ $55.464$ $45.560$ $0.738$ 12 $71.311$ $52.493$ $48.531$ $0.628$ 13 $73.292$ $52.493$ $50.512$ $0.589$ 14 $68.339$ $54.473$ $52.493$ $0.606$ 15 $73.292$ $53.483$ $50.512$ $0.609$ 16 $77.253$ $56.454$ $49.521$ $0.663$ 17 $78.244$ $57.445$ $47.540$ $0.695$ 18 $77.253$ $55.464$ $48.531$ $0.659$ 19 $73.292$ $54.473$ $49.521$ $0.644$ 20 $70.320$ $56.454$ $47.540$ $0.726$ 21 $73.292$ $57.445$ $50.512$ $0.687$ 22 $75.272$ $56.454$ $47.540$ $0.695$ 23 $71.311$ $57.445$ $51.502$ $0.654$ 24 $77.253$ $57.445$ $51.502$ $0.654$ 25 $73.292$ $54.473$ $48.531$ $0.658$ 26 $71.311$ $53.483$ $49.521$ $0.614$ 27 $75.272$ $53.483$ $47.540$ $0.646$ 28 $74.282$ $52.493$ $49.521$ $0.604$ 29 $82.205$ $53.483$ $49.521$ $0.605$ 30 $78.244$ $53.483$ $49.521$ $0.605$ 31 $79.234$ $53.483$ $49.521$ $0.605$ 32 $76.263$ $55.464$ $45.560$ $0.721$ 33 $69.330$ $56.454$ $47.540$ $0.734$ 34 $77.253$                                                  | 10 | 78.244                     | 53.483      | 46.550                 | 0.648                 |
| 12 $71.311$ $52.493$ $48.531$ $0.628$ 13 $73.292$ $52.493$ $50.512$ $0.589$ 14 $68.339$ $54.473$ $52.493$ $0.606$ 15 $73.292$ $53.483$ $50.512$ $0.609$ 16 $77.253$ $56.454$ $49.521$ $0.663$ 17 $78.244$ $57.445$ $47.540$ $0.695$ 18 $77.253$ $55.464$ $48.531$ $0.659$ 19 $73.292$ $54.473$ $49.521$ $0.644$ 20 $70.320$ $56.454$ $47.540$ $0.726$ 21 $73.292$ $57.445$ $50.512$ $0.687$ 22 $75.272$ $56.454$ $47.540$ $0.695$ 23 $71.311$ $57.445$ $49.521$ $0.714$ 24 $77.253$ $57.445$ $51.502$ $0.654$ 25 $73.292$ $54.473$ $48.531$ $0.658$ 26 $71.311$ $53.483$ $47.540$ $0.646$ 28 $74.282$ $52.493$ $49.521$ $0.614$ 27 $75.272$ $53.483$ $49.521$ $0.604$ 29 $82.205$ $53.483$ $49.521$ $0.605$ 30 $78.244$ $53.483$ $49.521$ $0.605$ 31 $79.234$ $53.483$ $49.521$ $0.605$ 32 $76.263$ $55.464$ $46.550$ $0.625$ 33 $69.330$ $56.454$ $47.540$ $0.734$ 34 $77.253$ $55.464$ $48.531$ $0.659$ 35 $76.263$                                                  | 11 | 69.330                     | 55.464      | 45.560                 | 0.738                 |
| 13 $73.292$ $52.493$ $50.512$ $0.589$ 14 $68.339$ $54.473$ $52.493$ $0.606$ 15 $73.292$ $53.483$ $50.512$ $0.609$ 16 $77.253$ $56.454$ $49.521$ $0.663$ 17 $78.244$ $57.445$ $47.540$ $0.695$ 18 $77.253$ $55.464$ $48.531$ $0.659$ 19 $73.292$ $54.473$ $49.521$ $0.644$ 20 $70.320$ $56.454$ $47.540$ $0.726$ 21 $73.292$ $57.445$ $50.512$ $0.687$ 22 $75.272$ $56.454$ $47.540$ $0.695$ 23 $71.311$ $57.445$ $49.521$ $0.714$ 24 $77.253$ $57.445$ $51.502$ $0.654$ 25 $73.292$ $54.473$ $48.531$ $0.658$ 26 $71.311$ $53.483$ $47.540$ $0.646$ 27 $75.272$ $53.483$ $47.540$ $0.644$ 29 $82.205$ $53.483$ $49.521$ $0.604$ 29 $82.205$ $53.483$ $49.521$ $0.604$ 29 $82.205$ $53.483$ $49.521$ $0.605$ 30 $78.244$ $53.483$ $48.531$ $0.625$ 31 $79.234$ $53.483$ $49.521$ $0.605$ 32 $76.263$ $55.464$ $46.550$ $0.685$ 34 $77.253$ $55.464$ $46.550$ $0.685$ 36 $74.282$ $56.454$ $45.560$ $0.721$ 37 $73.292$                                                  | 12 | 71.311                     | 52.493      | 48.531                 | 0.628                 |
| 14 $68.339$ $54.473$ $52.493$ $0.606$ $15$ $73.292$ $53.483$ $50.512$ $0.609$ $16$ $77.253$ $56.454$ $49.521$ $0.663$ $17$ $78.244$ $57.445$ $47.540$ $0.695$ $18$ $77.253$ $55.464$ $48.531$ $0.659$ $19$ $73.292$ $54.473$ $49.521$ $0.644$ $20$ $70.320$ $56.454$ $47.540$ $0.726$ $21$ $73.292$ $57.445$ $50.512$ $0.687$ $22$ $75.272$ $56.454$ $47.540$ $0.695$ $23$ $71.311$ $57.445$ $49.521$ $0.714$ $24$ $77.253$ $57.445$ $51.502$ $0.654$ $25$ $73.292$ $54.473$ $48.531$ $0.658$ $26$ $71.311$ $53.483$ $47.540$ $0.695$ $25$ $73.292$ $54.473$ $48.531$ $0.658$ $26$ $71.311$ $53.483$ $47.540$ $0.646$ $28$ $74.282$ $52.493$ $49.521$ $0.604$ $29$ $82.205$ $53.483$ $49.521$ $0.605$ $30$ $78.244$ $53.483$ $48.531$ $0.625$ $31$ $79.234$ $53.483$ $49.521$ $0.607$ $32$ $76.263$ $55.464$ $46.550$ $0.685$ $36$ $74.282$ $56.454$ $45.560$ $0.721$ $37$ $73.292$ $57.445$ $45.560$ $0.721$ $38$ $79.234$ $59.426$ $47.540$ $0.719$                  | 13 | 73.292                     | 52.493      | 50.512                 | 0.589                 |
| 15 $73.292$ $53.483$ $50.512$ $0.609$ 16 $77.253$ $56.454$ $49.521$ $0.663$ 17 $78.244$ $57.445$ $47.540$ $0.695$ 18 $77.253$ $55.464$ $48.531$ $0.659$ 19 $73.292$ $54.473$ $49.521$ $0.644$ 20 $70.320$ $56.454$ $47.540$ $0.726$ 21 $73.292$ $57.445$ $50.512$ $0.687$ 22 $75.272$ $56.454$ $47.540$ $0.695$ 23 $71.311$ $57.445$ $51.502$ $0.654$ 24 $77.253$ $57.445$ $51.502$ $0.654$ 25 $73.292$ $54.473$ $48.531$ $0.658$ 26 $71.311$ $53.483$ $50.512$ $0.614$ 27 $75.272$ $53.483$ $47.540$ $0.646$ 28 $74.282$ $52.493$ $49.521$ $0.604$ 29 $82.205$ $53.483$ $49.521$ $0.604$ 29 $82.205$ $53.483$ $49.521$ $0.605$ 30 $78.244$ $53.483$ $49.521$ $0.605$ 31 $79.234$ $53.483$ $49.521$ $0.610$ 32 $76.263$ $55.464$ $46.550$ $0.685$ 34 $77.253$ $55.464$ $46.550$ $0.677$ 33 $69.330$ $56.454$ $47.540$ $0.721$ 34 $77.253$ $55.464$ $46.550$ $0.685$ 36 $74.282$ $56.454$ $45.560$ $0.721$ 37 $73.292$                                                  | 14 | 68.339                     | 54.473      | 52.493                 | 0.606                 |
| 16 $77.253$ $56.454$ $49.521$ $0.663$ $17$ $78.244$ $57.445$ $47.540$ $0.695$ $18$ $77.253$ $55.464$ $48.531$ $0.659$ $19$ $73.292$ $54.473$ $49.521$ $0.644$ $20$ $70.320$ $56.454$ $47.540$ $0.726$ $21$ $73.292$ $57.445$ $50.512$ $0.687$ $22$ $75.272$ $56.454$ $47.540$ $0.695$ $23$ $71.311$ $57.445$ $49.521$ $0.714$ $24$ $77.253$ $57.445$ $51.502$ $0.654$ $25$ $73.292$ $54.473$ $48.531$ $0.658$ $26$ $71.311$ $53.483$ $50.512$ $0.614$ $27$ $75.272$ $53.483$ $47.540$ $0.646$ $28$ $74.282$ $52.493$ $49.521$ $0.604$ $29$ $82.205$ $53.483$ $49.521$ $0.604$ $29$ $82.205$ $53.483$ $49.521$ $0.605$ $30$ $78.244$ $53.483$ $49.521$ $0.605$ $31$ $79.234$ $53.483$ $49.521$ $0.610$ $32$ $76.263$ $55.464$ $46.550$ $0.734$ $34$ $77.253$ $55.464$ $46.550$ $0.721$ $37$ $73.292$ $57.445$ $47.540$ $0.734$ $34$ $77.253$ $55.464$ $46.550$ $0.721$ $37$ $73.292$ $57.445$ $47.540$ $0.723$ $38$ $79.234$ $59.426$ $47.540$ $0.719$                  | 15 | 73.292                     | 53.483      | 50.512                 | 0.609                 |
| 17 $78.244$ $57.445$ $47.540$ $0.695$ $18$ $77.253$ $55.464$ $48.531$ $0.659$ $19$ $73.292$ $54.473$ $49.521$ $0.644$ $20$ $70.320$ $56.454$ $47.540$ $0.726$ $21$ $73.292$ $57.445$ $50.512$ $0.687$ $22$ $75.272$ $56.454$ $47.540$ $0.695$ $23$ $71.311$ $57.445$ $49.521$ $0.714$ $24$ $77.253$ $57.445$ $51.502$ $0.654$ $25$ $73.292$ $54.473$ $48.531$ $0.658$ $26$ $71.311$ $53.483$ $50.512$ $0.614$ $27$ $75.272$ $53.483$ $47.540$ $0.646$ $28$ $74.282$ $52.493$ $49.521$ $0.604$ $29$ $82.205$ $53.483$ $49.521$ $0.605$ $30$ $78.244$ $53.483$ $49.521$ $0.605$ $31$ $79.234$ $53.483$ $49.521$ $0.610$ $32$ $76.263$ $55.464$ $50.512$ $0.637$ $33$ $69.330$ $56.454$ $47.540$ $0.734$ $34$ $77.253$ $55.464$ $48.531$ $0.659$ $35$ $76.263$ $55.464$ $46.550$ $0.685$ $36$ $74.282$ $56.454$ $45.560$ $0.721$ $37$ $73.292$ $57.445$ $47.540$ $0.723$ $38$ $79.234$ $59.426$ $47.540$ $0.719$                                                          | 16 | 77.253                     | 56.454      | 49.521                 | 0.663                 |
| 18 $77.253$ $55.464$ $48.531$ $0.659$ $19$ $73.292$ $54.473$ $49.521$ $0.644$ $20$ $70.320$ $56.454$ $47.540$ $0.726$ $21$ $73.292$ $57.445$ $50.512$ $0.687$ $22$ $75.272$ $56.454$ $47.540$ $0.695$ $23$ $71.311$ $57.445$ $49.521$ $0.714$ $24$ $77.253$ $57.445$ $51.502$ $0.654$ $25$ $73.292$ $54.473$ $48.531$ $0.658$ $26$ $71.311$ $53.483$ $50.512$ $0.614$ $27$ $75.272$ $53.483$ $47.540$ $0.646$ $28$ $74.282$ $52.493$ $49.521$ $0.604$ $29$ $82.205$ $53.483$ $49.521$ $0.605$ $30$ $78.244$ $53.483$ $49.521$ $0.605$ $31$ $79.234$ $53.483$ $49.521$ $0.610$ $32$ $76.263$ $55.464$ $50.512$ $0.637$ $33$ $69.330$ $56.454$ $47.540$ $0.734$ $34$ $77.253$ $55.464$ $48.531$ $0.659$ $35$ $76.263$ $55.464$ $48.531$ $0.659$ $35$ $76.263$ $55.464$ $48.531$ $0.659$ $36$ $74.282$ $56.454$ $45.560$ $0.721$ $37$ $73.292$ $57.445$ $47.540$ $0.733$ $38$ $79.234$ $59.426$ $47.540$ $0.719$                                                          | 17 | 78.244                     | 57.445      | 47.540                 | 0.695                 |
| 19 $73.292$ $54.473$ $49.521$ $0.644$ 20 $70.320$ $56.454$ $47.540$ $0.726$ 21 $73.292$ $57.445$ $50.512$ $0.687$ 22 $75.272$ $56.454$ $47.540$ $0.695$ 23 $71.311$ $57.445$ $49.521$ $0.714$ 24 $77.253$ $57.445$ $51.502$ $0.654$ 25 $73.292$ $54.473$ $48.531$ $0.658$ 26 $71.311$ $53.483$ $50.512$ $0.614$ 27 $75.272$ $53.483$ $47.540$ $0.646$ 28 $74.282$ $52.493$ $49.521$ $0.604$ 29 $82.205$ $53.483$ $49.521$ $0.605$ 30 $78.244$ $53.483$ $49.521$ $0.605$ 31 $79.234$ $53.483$ $49.521$ $0.610$ 32 $76.263$ $55.464$ $50.512$ $0.637$ 33 $69.330$ $56.454$ $47.540$ $0.734$ 34 $77.253$ $55.464$ $46.550$ $0.685$ 36 $74.282$ $56.454$ $45.560$ $0.721$ 37 $73.292$ $57.445$ $47.540$ $0.723$ 38 $79.234$ $59.426$ $47.540$ $0.719$                                                                                                                                                                                                                      | 18 | 77.253                     | 55.464      | 48.531                 | 0.659                 |
| 20 $70.320$ $56.454$ $47.540$ $0.726$ $21$ $73.292$ $57.445$ $50.512$ $0.687$ $22$ $75.272$ $56.454$ $47.540$ $0.695$ $23$ $71.311$ $57.445$ $49.521$ $0.714$ $24$ $77.253$ $57.445$ $51.502$ $0.654$ $25$ $73.292$ $54.473$ $48.531$ $0.658$ $26$ $71.311$ $53.483$ $50.512$ $0.614$ $27$ $75.272$ $53.483$ $47.540$ $0.646$ $28$ $74.282$ $52.493$ $49.521$ $0.604$ $29$ $82.205$ $53.483$ $49.521$ $0.605$ $30$ $78.244$ $53.483$ $49.521$ $0.605$ $31$ $79.234$ $53.483$ $49.521$ $0.610$ $32$ $76.263$ $55.464$ $50.512$ $0.637$ $33$ $69.330$ $56.454$ $47.540$ $0.734$ $34$ $77.253$ $55.464$ $48.531$ $0.659$ $35$ $76.263$ $55.464$ $46.550$ $0.685$ $36$ $74.282$ $56.454$ $45.560$ $0.721$ $37$ $73.292$ $57.445$ $47.540$ $0.723$ $38$ $79.234$ $59.426$ $47.540$ $0.719$                                                                                                                                                                                  | 19 | 73.292                     | 54.473      | 49.521                 | 0.644                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20 | 70.320                     | 56.454      | 47.540                 | 0.726                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21 | 73.292                     | 57.445      | 50.512                 | 0.687                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22 | 75.272                     | 56.454      | 47.540                 | 0.695                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23 | 71.311                     | 57.445      | 49.521                 | 0.714                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24 | 77.253                     | 57.445      | 51.502                 | 0.654                 |
| 26 $71.311$ $53.483$ $50.512$ $0.614$ $27$ $75.272$ $53.483$ $47.540$ $0.646$ $28$ $74.282$ $52.493$ $49.521$ $0.604$ $29$ $82.205$ $53.483$ $49.521$ $0.605$ $30$ $78.244$ $53.483$ $48.531$ $0.625$ $31$ $79.234$ $53.483$ $49.521$ $0.610$ $32$ $76.263$ $55.464$ $50.512$ $0.637$ $33$ $69.330$ $56.454$ $47.540$ $0.734$ $34$ $77.253$ $55.464$ $48.531$ $0.659$ $35$ $76.263$ $55.464$ $48.531$ $0.659$ $36$ $74.282$ $56.454$ $45.560$ $0.721$ $37$ $73.292$ $57.445$ $47.540$ $0.723$ $38$ $79.234$ $59.426$ $47.540$ $0.719$                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25 | 73.292                     | 54.473      | 48.531                 | 0.658                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26 | 71.311                     | 53.483      | 50.512                 | 0.614                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27 | 75.272                     | 53.483      | 47.540                 | 0.646                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28 | 74.282                     | 52.493      | 49.521                 | 0.604                 |
| 30 $78.244$ $53.483$ $48.531$ $0.625$ $31$ $79.234$ $53.483$ $49.521$ $0.610$ $32$ $76.263$ $55.464$ $50.512$ $0.637$ $33$ $69.330$ $56.454$ $47.540$ $0.734$ $34$ $77.253$ $55.464$ $48.531$ $0.659$ $35$ $76.263$ $55.464$ $46.550$ $0.685$ $36$ $74.282$ $56.454$ $45.560$ $0.721$ $37$ $73.292$ $57.445$ $47.540$ $0.723$ $38$ $79.234$ $59.426$ $47.540$ $0.719$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29 | 82.205                     | 53.483      | 49.521                 | 0.605                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30 | 78.244                     | 53.483      | 48.531                 | 0.625                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31 | 79.234                     | 53.483      | 49.521                 | 0.610                 |
| 3369.33056.45447.5400.7343477.25355.46448.5310.6593576.26355.46446.5500.6853674.28256.45445.5600.7213773.29257.44547.5400.7233879.23459.42647.5400.719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32 | 76.263                     | 55.464      | 50.512                 | 0.637                 |
| 3477.25355.46448.5310.6593576.26355.46446.5500.6853674.28256.45445.5600.7213773.29257.44547.5400.7233879.23459.42647.5400.719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33 | 69.330                     | 56.454      | 47.540                 | 0.734                 |
| 3576.26355.46446.5500.6853674.28256.45445.5600.7213773.29257.44547.5400.7233879.23459.42647.5400.719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34 | 77.253                     | 55.464      | 48.531                 | 0.659                 |
| 3674.28256.45445.5600.7213773.29257.44547.5400.7233879.23459.42647.5400.719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35 | 76.263                     | 55.464      | 46.550                 | 0.685                 |
| 3773.29257.44547.5400.7233879.23459.42647.5400.719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36 | 74.282                     | 56.454      | 45.560                 | 0.721                 |
| 38 79.234 59.426 47.540 0.719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37 | 73.292                     | 57.445      | 47.540                 | 0.723                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38 | 79.234                     | 59.426      | 47.540                 | 0.719                 |
| 39 78.244 58.435 49.521 0.690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39 | 78.244                     | 58.435      | 49.521                 | 0.690                 |
| 40 79.234 56.454 50.512 0.643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40 | 79.234                     | 56.454      | 50.512                 | 0.643                 |
| 41 75.272 57.445 48.531 0.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41 | 75.272                     | 57.445      | 48.531                 | 0.700                 |
| 42 74.282 56.454 47.540 0.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42 | 74.282                     | 56.454      | 47.540                 | 0.700                 |
| 43 76.263 57.445 48.531 0.695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43 | 76.263                     | 57.445      | 48.531                 | 0.695                 |
| 44 77.253 54.473 50.512 0.617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44 | 77.253                     | 54.473      | 50.512                 | 0.617                 |
| 45 82.205 53.483 51.502 0.579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45 | 82.205                     | 53.483      | 51.502                 | 0.579                 |
| 46 77.253 54.473 49.521 0.630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46 | 77.253                     | 54.473      | 49.521                 | 0.630                 |

## Appendix 1 Run-up heights of different types of revetments (slope 1.2).

|            | Wave run-un                | Wave run-un      | Wave run_un            |                              |
|------------|----------------------------|------------------|------------------------|------------------------------|
| ID         | of concrete revetment (cm) | of PBR (cm)      | of rock revetment (cm) | <b>Calculated</b> $\gamma_r$ |
| 47         | <u>85 177</u>              | 60 416           | 52 493                 | 0.659                        |
| 48         | 81 215                     | 53 483           | 49 521                 | 0.606                        |
| <u>4</u> 9 | 82 205                     | 54 473           | 48 531                 | 0.600                        |
| 50         | 76 263                     | 53 483           | 46 550                 | 0.655                        |
| 51         | 77.253                     | 53 483           | 49 521                 | 0.614                        |
| 52         | 82 205                     | 56 454           | 47.521                 | 0.614                        |
| 53         | 79 234                     | 55 464           | 48 531                 | 0.652                        |
| 54         | 78.244                     | 56 / 5/          | 48.531                 | 0.670                        |
| 55         | 70.234                     | 57 445           | 46.550                 | 0.070                        |
| 55         | 82 205                     | 57 445           | 40.550                 | 0.700                        |
| 57         | 80.225                     | 58 425           | 40.531                 | 0.009                        |
| 58         | 80.225                     | 55 464           | 49.521                 | 0.645                        |
| 50         | 01.213                     | 57 44            | 40.531                 | 0.043                        |
| 59         | 70.224                     | 59 425           | 49.321                 | 0.700                        |
| 60         | 79.234                     | 58.455<br>57.445 | 50.512                 | 0.0/4                        |
| 01<br>()   | 78.292                     | 57.445           | 50.512<br>40.521       | 0.08/                        |
| 02<br>(2   | 78.244                     | 57.445           | 49.521                 | 0.0/4                        |
| 63         | 76.263                     | 57.445           | 47.540                 | 0.705                        |
| 64         | 75.272                     | 56.454           | 46.550                 | 0.705                        |
| 65         | 79.234                     | 57.445           | 47.540                 | 0.691                        |
| 66         | 76.263                     | 57.445           | 48.531                 | 0.695                        |
| 67         | 71.311                     | 57.445           | 46.550                 | 0.748                        |
| 68         | 72.301                     | 58.435           | 47.540                 | 0.748                        |
| 69         | 76.263                     | 56.454           | 48.531                 | 0.679                        |
| 70         | 76.263                     | 56.454           | 46.550                 | 0.700                        |
| 71         | 69.330                     | 56.454           | 49.521                 | 0.708                        |
| 72         | 72.301                     | 56.454           | 47.540                 | 0.712                        |
| 73         | 71.311                     | 54.473           | 50.512                 | 0.636                        |
| 74         | 76.263                     | 55.464           | 49.521                 | 0.650                        |
| 75         | 78.244                     | 56.454           | 48.531                 | 0.670                        |
| 76         | 82.205                     | 59.426           | 52.493                 | 0.655                        |
| 77         | 69.330                     | 56.454           | 50.512                 | 0.692                        |
| 78         | 68.339                     | 56.454           | 49.521                 | 0.716                        |
| 79         | 73.292                     | 57.445           | 48.531                 | 0.712                        |
| 80         | 74.282                     | 57.445           | 47.540                 | 0.717                        |
| 81         | 73.292                     | 55.464           | 46.550                 | 0.700                        |
| 82         | 73.292                     | 57.445           | 49.521                 | 0.700                        |
| 83         | 76.263                     | 58.435           | 47.540                 | 0.721                        |
| 84         | 78.244                     | 57.445           | 48.531                 | 0.685                        |
| 85         | 75.272                     | 58.435           | 46.550                 | 0.736                        |
| 86         | 76.263                     | 57.445           | 49.521                 | 0.683                        |
| 87         | 75.272                     | 58.435           | 50.512                 | 0.694                        |
| 88         | 77.253                     | 58.435           | 48.531                 | 0.705                        |
| 89         | 76.263                     | 58.435           | 49.521                 | 0.700                        |
| 90         | 75.272                     | 56.454           | 49.521                 | 0.671                        |
| 91         | 78.244                     | 56.454           | 50.512                 | 0.646                        |
| 92         | 77.253                     | 57.445           | 49.521                 | 0.679                        |
| 93         | 75.272                     | 57.445           | 48,531                 | 0.700                        |
| 94         | 75.272                     | 56.454           | 48.531                 | 0.683                        |

| ID  | Wave run-up                | Wave run-up | Wave run-up            | Calculated V          |
|-----|----------------------------|-------------|------------------------|-----------------------|
|     | of concrete revetment (cm) | of PBR (cm) | of rock revetment (cm) | Calculated $\gamma_r$ |
| 95  | 74.282                     | 56.454      | 48.531                 | 0.688                 |
| 96  | 77.253                     | 55.464      | 49.521                 | 0.646                 |
| 97  | 71.311                     | 57.445      | 47.540                 | 0.737                 |
| 98  | 72.301                     | 59.426      | 47.540                 | 0.766                 |
| 99  | 70.320                     | 57.445      | 49.521                 | 0.721                 |
| 100 | 75.272                     | 56.454      | 48.531                 | 0.683                 |

Appendix 2 Run-up heights of different types of revetments (slope 1.1.5).

|    | Wave run-up                | Wave run-up | Wave run-up            |                       |
|----|----------------------------|-------------|------------------------|-----------------------|
| ID | of concrete revetment (cm) | of PBR (cm) | of rock revetment (cm) | Calculated $\gamma_r$ |
| 1  | 41.948                     | 25.169      | 13.728                 | 0.732                 |
| 2  | 40.422                     | 25.169      | 11.440                 | 0.763                 |
| 3  | 39.660                     | 22.881      | 13.728                 | 0.709                 |
| 4  | 40.422                     | 23.643      | 14.491                 | 0.709                 |
| 5  | 39.660                     | 22.881      | 14.491                 | 0.700                 |
| 6  | 40.422                     | 25.169      | 16.016                 | 0.719                 |
| 7  | 40.422                     | 24.406      | 16.779                 | 0.695                 |
| 8  | 38.134                     | 23.643      | 15.254                 | 0.715                 |
| 9  | 38.134                     | 23.643      | 16.016                 | 0.705                 |
| 10 | 38.134                     | 25.169      | 16.779                 | 0.727                 |
| 11 | 39.660                     | 23.643      | 14.491                 | 0.714                 |
| 12 | 39.660                     | 24.406      | 16.016                 | 0.710                 |
| 13 | 41.185                     | 19.067      | 16.016                 | 0.605                 |
| 14 | 41.185                     | 25.169      | 17.542                 | 0.695                 |
| 15 | 40.422                     | 22.118      | 16.016                 | 0.663                 |
| 16 | 41.185                     | 23.643      | 16.779                 | 0.677                 |
| 17 | 38.897                     | 24.406      | 16.016                 | 0.715                 |
| 18 | 38.134                     | 20.592      | 16.779                 | 0.630                 |
| 19 | 39.660                     | 25.931      | 17.542                 | 0.721                 |
| 20 | 39.660                     | 24.406      | 16.779                 | 0.700                 |
| 21 | 40.422                     | 23.643      | 18.304                 | 0.659                 |
| 22 | 41.185                     | 23.643      | 15.254                 | 0.696                 |
| 23 | 40.422                     | 23.643      | 16.016                 | 0.691                 |
| 24 | 40.422                     | 22.881      | 16.779                 | 0.666                 |
| 25 | 39.660                     | 23.643      | 17.542                 | 0.674                 |
| 26 | 39.660                     | 23.643      | 16.779                 | 0.685                 |
| 27 | 40.422                     | 22.881      | 16.016                 | 0.677                 |
| 28 | 38.897                     | 22.118      | 16.779                 | 0.659                 |
| 29 | 38.897                     | 22.118      | 18.304                 | 0.633                 |
| 30 | 39.660                     | 23.643      | 19.067                 | 0.650                 |
| 31 | 39.660                     | 22.881      | 17.542                 | 0.659                 |
| 32 | 41.948                     | 22.118      | 18.304                 | 0.623                 |
| 33 | 42.710                     | 23.643      | 17.542                 | 0.659                 |
| 34 | 39.660                     | 22.881      | 16.016                 | 0.681                 |
| 35 | 41.185                     | 23.643      | 17.542                 | 0.666                 |
| 36 | 41.948                     | 25.169      | 19.830                 | 0.659                 |

|          | Wave run-un                | Wave run-un | Wave run-un            |                              |
|----------|----------------------------|-------------|------------------------|------------------------------|
| ID       | of concrete revetment (cm) | of PBR (cm) | of rock revetment (cm) | <b>Calculated</b> $\gamma_r$ |
| 37       | 43.473                     | 23.643      | 22.118                 | 0.582                        |
| 38       | 41.948                     | 22.881      | 19.067                 | 0.625                        |
| 39       | 42.710                     | 23.643      | 17.542                 | 0.659                        |
| 40       | 45.761                     | 22.881      | 16.779                 | 0.645                        |
| 41       | 42.710                     | 23.643      | 16.016                 | 0.679                        |
| 42       | 44.998                     | 22.118      | 15.254                 | 0.654                        |
| 43       | 41.948                     | 22.881      | 17.542                 | 0.648                        |
| 44       | 41.948                     | 23.643      | 19.067                 | 0.640                        |
| 45       | 41.185                     | 22.881      | 19.067                 | 0.628                        |
| 46       | 41.948                     | 23.643      | 19.830                 | 0.628                        |
| 47       | 44.998                     | 24.406      | 19.067                 | 0.643                        |
| 48       | 45.761                     | 22.881      | 18.304                 | 0.625                        |
| 49       | 44.998                     | 22.881      | 17.542                 | 0.638                        |
| 50       | 44.236                     | 20.592      | 16.779                 | 0.612                        |
| 51       | 44.998                     | 20.592      | 15.254                 | 0.631                        |
| 52       | 45.761                     | 20.592      | 16.016                 | 0.619                        |
| 53       | 42.710                     | 21.355      | 16.779                 | 0.629                        |
| 54       | 43.473                     | 20.592      | 16.016                 | 0.625                        |
| 55       | 42.710                     | 20.592      | 16.779                 | 0.616                        |
| 56       | 43.473                     | 22.118      | 15.254                 | 0.659                        |
| 57       | 44.998                     | 22.881      | 16.779                 | 0.647                        |
| 58       | 42.710                     | 21.355      | 19.067                 | 0.594                        |
| 59<br>59 | 40.422                     | 21.355      | 21.355                 | 0.550                        |
| 60       | 48.812                     | 25.931      | 22.118                 | 0.614                        |
| 61       | 41.948                     | 22.118      | 21.355                 | 0.567                        |
| 62       | 48.812                     | 25 931      | 22 118                 | 0.614                        |
| 63       | 40.422                     | 20.592      | 19.830                 | 0.567                        |
| 64       | 41.185                     | 20.592      | 19.067                 | 0.581                        |
| 65       | 39.660                     | 22.118      | 19.830                 | 0.602                        |
| 66       | 40.422                     | 25.931      | 22.118                 | 0.644                        |
| 67       | 41.185                     | 19.830      | 21.355                 | 0.515                        |
| 68       | 41.948                     | 20.592      | 21.355                 | 0.533                        |
| 69       | 39.660                     | 19.830      | 19.067                 | 0.567                        |
| 70       | 40.422                     | 20.592      | 19.067                 | 0.582                        |
| 71       | 41.948                     | 21.355      | 18.304                 | 0.608                        |
| 72       | 45.761                     | 21.355      | 18.304                 | 0.600                        |
| 73       | 43.473                     | 22.881      | 19.830                 | 0.608                        |
| 74       | 45.761                     | 21.355      | 21.355                 | 0.550                        |
| 75       | 46.524                     | 22.118      | 19.067                 | 0.600                        |
| 76       | 45.761                     | 21.355      | 16.016                 | 0.631                        |
| 77       | 44.236                     | 20.592      | 17.542                 | 0.601                        |
| 78       | 44.998                     | 20.592      | 17.542                 | 0.600                        |
| 79       | 45.761                     | 21.355      | 18.304                 | 0.600                        |
| 80       | 45.761                     | 21.355      | 19.830                 | 0.576                        |
| 81       | 44.236                     | 20.592      | 20.592                 | 0.550                        |
| 82       | 46.524                     | 20.592      | 19.067                 | 0.575                        |
| 83       | 43.473                     | 20.592      | 19.830                 | 0.565                        |
| 84       | 44.236                     | 19.830      | 21.355                 | 0.520                        |

| ID  | Wave run-up                | Wave run-up | Wave run-up            | Calculated V          |
|-----|----------------------------|-------------|------------------------|-----------------------|
|     | of concrete revetment (cm) | of PBR (cm) | of rock revetment (cm) | Calculated $\gamma_r$ |
| 85  | 48.049                     | 20.592      | 20.592                 | 0.550                 |
| 86  | 48.049                     | 19.830      | 19.067                 | 0.562                 |
| 87  | 41.948                     | 19.830      | 19.067                 | 0.565                 |
| 88  | 45.761                     | 21.355      | 18.304                 | 0.600                 |
| 89  | 45.761                     | 19.830      | 19.067                 | 0.563                 |
| 90  | 44.998                     | 22.118      | 18.304                 | 0.614                 |
| 91  | 45.761                     | 22.881      | 19.067                 | 0.614                 |
| 92  | 46.524                     | 22.118      | 19.830                 | 0.589                 |
| 93  | 47.286                     | 22.118      | 17.542                 | 0.619                 |
| 94  | 46.524                     | 22.118      | 16.779                 | 0.631                 |
| 95  | 47.286                     | 20.592      | 18.304                 | 0.586                 |
| 96  | 45.761                     | 20.592      | 19.067                 | 0.576                 |
| 97  | 44.998                     | 22.881      | 19.830                 | 0.605                 |
| 98  | 45.761                     | 22.118      | 19.067                 | 0.601                 |
| 99  | 44.998                     | 22.881      | 20.592                 | 0.592                 |
| 100 | 42.710                     | 22.881      | 19.067                 | 0.623                 |

Appendix 3 Run-up heights of different types of revetments (slope 1.1).

| ID | Wave run-up                | Wave run-up | Wave run-up            |                       |
|----|----------------------------|-------------|------------------------|-----------------------|
| ID | of concrete revetment (cm) | of PBR (cm) | of rock revetment (cm) | Calculated $\gamma_r$ |
| 1  | 38.291                     | 22.124      | 13.615                 | 0.705                 |
| 2  | 23.825                     | 13.615      | 12.764                 | 0.585                 |
| 3  | 33.185                     | 17.869      | 14.465                 | 0.632                 |
| 4  | 32.334                     | 17.869      | 11.062                 | 0.694                 |
| 5  | 30.633                     | 16.167      | 9.360                  | 0.694                 |
| 6  | 30.633                     | 15.316      | 11.913                 | 0.632                 |
| 7  | 35.738                     | 16.167      | 9.360                  | 0.666                 |
| 8  | 31.483                     | 17.018      | 11.062                 | 0.681                 |
| 9  | 34.036                     | 17.018      | 11.913                 | 0.654                 |
| 10 | 33.185                     | 15.316      | 14.465                 | 0.570                 |
| 11 | 28.080                     | 16.167      | 12.764                 | 0.650                 |
| 12 | 28.931                     | 14.465      | 14.465                 | 0.550                 |
| 13 | 27.229                     | 13.615      | 12.764                 | 0.576                 |
| 14 | 28.931                     | 15.316      | 11.062                 | 0.657                 |
| 15 | 27.229                     | 15.316      | 13.615                 | 0.606                 |
| 16 | 26.378                     | 15.316      | 14.465                 | 0.582                 |
| 17 | 26.378                     | 16.167      | 14.465                 | 0.614                 |
| 18 | 25.527                     | 16.167      | 13.615                 | 0.646                 |
| 19 | 25.527                     | 17.018      | 12.764                 | 0.700                 |
| 20 | 24.676                     | 15.316      | 12.764                 | 0.646                 |
| 21 | 26.378                     | 14.465      | 11.913                 | 0.629                 |
| 22 | 27.229                     | 14.465      | 14.465                 | 0.550                 |
| 23 | 26.378                     | 14.465      | 11.062                 | 0.650                 |
| 24 | 24.676                     | 13.615      | 12.764                 | 0.582                 |
| 25 | 26.378                     | 12.764      | 11.913                 | 0.576                 |
| 26 | 27.229                     | 11.913      | 11.062                 | 0.574                 |

\_

|                  | Wave run_un                | Wave run_un      | Wave run_un            |                              |
|------------------|----------------------------|------------------|------------------------|------------------------------|
| ID               | of concrete revetment (cm) | of PRR (cm)      | of rock revetment (cm) | <b>Calculated</b> $\gamma_r$ |
| 27               | 24 676                     | 11 913           | 9 360                  | 0.625                        |
| 28               | 27 229                     | 13 615           | 11 913                 | 0.600                        |
| 20               | 26 378                     | 14 465           | 12 764                 | 0.606                        |
| 30               | 28.931                     | 15 316           | 14 465                 | 0.576                        |
| 31               | 28.080                     | 15 316           | 15 316                 | 0.570                        |
| 32               | 24 676                     | 16 167           | 14 465                 | 0.625                        |
| 33               | 37 440                     | 18 720           | 16 167                 | 0.604                        |
| 34               | 27 229                     | 17.018           | 14 465                 | 0.640                        |
| 35               | 28 931                     | 17.018           | 13 615                 | 0.650                        |
| 36               | 31 483                     | 16 167           | 12 764                 | 0.632                        |
| 37               | 31 483                     | 16 167           | 11.062                 | 0.652                        |
| 38               | 32 334                     | 14 465           | 11 913                 | 0.606                        |
| 39               | 29 782                     | 14 465           | 13 615                 | 0.574                        |
| 40               | 33 185                     | 15 316           | 11 913                 | 0.622                        |
| 41               | 34 036                     | 15 316           | 11.062                 | 0.622                        |
| 42               | 35 738                     | 17.018           | 10 211                 | 0.670                        |
| 42               | 33 185                     | 15 316           | 11 913                 | 0.670                        |
| $\frac{43}{44}$  | 34 036                     | 16 167           | 12 764                 | 0.622                        |
| 45               | 33 185                     | 15 316           | 14 465                 | 0.570                        |
| т <i>э</i><br>46 | 35 738                     | 15 316           | 11 013                 | 0.570                        |
| 40<br>47         | 37 //0                     | 19.510<br>18 770 | 14 465                 | 0.633                        |
|                  | 33 185                     | 15 316           | 11 013                 | 0.633                        |
| 40               | 32 334                     | 13.510           | 11.915                 | 0.520                        |
|                  | 38 201                     | 19.015<br>19.770 | 16 167                 | 0.527                        |
| 51               | 28 031                     | 10.720           | 15 316                 | 0.522                        |
| 52               | 28.931                     | 14.405           | 11 013                 | 0.522                        |
| 52               | 20.931                     | 14.405           | 12 764                 | 0.018                        |
| 54               | 29.782                     | 14 465           | 13 615                 | 0.573                        |
| 55               | 27.782                     | 13 615           | 11 013                 | 0.574                        |
| 55               | 26.378                     | 13.615           | 11.013                 | 0.000                        |
| 50<br>57         | 20.578                     | 14.465           | 11.002                 | 0.623                        |
| 58               | 23.327                     | 14.405           | 9 360                  | 0.034                        |
| 50               | 21.229                     | 15.310           | 12 764                 | 0.700                        |
| 60               | 20 782                     | 17.018           | 12.704                 | 0.645                        |
| 61               | 23.782                     | 18 720           | 14.465                 | 0.045                        |
| 62               | 27.229                     | 15.720           | 14.465                 | 0.700                        |
| 62               | 29.762                     | 15.510           | 14.403                 | 0.575                        |
| 64               | 26.731                     | 17.018           | 12.615                 | 0.578                        |
| 65               | 20.578                     | 17.016           | 13.013                 | 0.070                        |
| 66               | 27.229                     | 15.510           | 14.403                 | 0.580                        |
| 67               | 27.229                     | 15.510           | 12.704                 | 0.029                        |
| 0/<br>60         | 20.731                     | 13.310           | 11.713                 | 0.040                        |
| 08<br>60         | 23.823<br>25.527           | 13.310           | 0.260                  | 0.700                        |
| 09<br>70         | 23.327                     | 14.40J<br>14.465 | 7.500<br>10.211        | 0.092                        |
| /U<br>71         | 24.070                     | 14.400           | 10.211                 | 0.082                        |
| /1               | 21.229                     | 15.510           | 9.300                  | 0.700                        |
| 12               | 25.527                     | 15.316           | 10.211                 | 0.700                        |
| 13               | 28.951                     | 14.405           | 11.913                 | 0.618                        |
| /4               | 20.378                     | 13.015           | 11.062                 | 0.625                        |

| ID  | Wave run-up                | Wave run-up | Wave run-up            |                       |
|-----|----------------------------|-------------|------------------------|-----------------------|
| ID  | of concrete revetment (cm) | of PBR (cm) | of rock revetment (cm) | Calculated $\gamma_r$ |
| 75  | 22.974                     | 12.764      | 11.062                 | 0.614                 |
| 76  | 23.825                     | 13.615      | 11.913                 | 0.614                 |
| 77  | 25.527                     | 14.465      | 13.615                 | 0.582                 |
| 78  | 27.229                     | 15.316      | 13.615                 | 0.606                 |
| 79  | 26.378                     | 15.316      | 12.764                 | 0.634                 |
| 80  | 25.527                     | 14.465      | 13.615                 | 0.582                 |
| 81  | 29.782                     | 13.615      | 12.764                 | 0.573                 |
| 82  | 27.229                     | 14.465      | 11.913                 | 0.625                 |
| 83  | 23.825                     | 14.465      | 14.465                 | 0.550                 |
| 84  | 25.527                     | 14.465      | 11.913                 | 0.634                 |
| 85  | 24.676                     | 14.465      | 11.062                 | 0.663                 |
| 86  | 25.527                     | 15.316      | 11.062                 | 0.682                 |
| 87  | 22.124                     | 15.316      | 13.615                 | 0.640                 |
| 88  | 22.974                     | 15.316      | 13.615                 | 0.632                 |
| 89  | 21.273                     | 15.316      | 12.764                 | 0.685                 |
| 90  | 23.825                     | 17.018      | 11.062                 | 0.760                 |
| 91  | 24.676                     | 14.465      | 10.211                 | 0.682                 |
| 92  | 26.378                     | 15.316      | 9.360                  | 0.708                 |
| 93  | 25.527                     | 14.465      | 9.360                  | 0.692                 |
| 94  | 27.229                     | 14.465      | 10.211                 | 0.663                 |
| 95  | 23.825                     | 17.018      | 11.062                 | 0.760                 |
| 96  | 25.527                     | 15.316      | 11.062                 | 0.682                 |
| 97  | 26.378                     | 17.018      | 11.913                 | 0.709                 |
| 98  | 25.527                     | 15.316      | 13.615                 | 0.614                 |
| 99  | 22.124                     | 17.018      | 14.465                 | 0.700                 |
| 100 | 22.124                     | 16.167      | 12.764                 | 0.714                 |