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Integration of Capsule Network with CNN for Plant Leaf Disease 

Classification 
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ABSTRACT 

 Plant leaf disease classification is challenging due to the wide variation in disease 

symptoms and the diverse morphological characteristics of plant leaves. These variations 

complicate model training and hinder classification accuracy. This study proposed a hybrid 

deep learning (DL) model for leaf disease training and classification. The proposed model 

integrates Capsule Networks (CN) for spatial relationship retention, SE-Residual blocks 

improve feature extraction while minimizing information loss, and CN capture spatial 

relationships with reduced dependency on large datasets, and Long Short-Term Memory 

(LSTM) to enhance training efficiency. The proposed model was trained and evaluated using 

the Rice Leaf Disease Dataset (RLDD). Its performance was compared with existing state-of-

the-art models. The experimental results showed that the proposed model achieved the highest 

training accuracy of 96.01%, classification results 75.67% for bacterial leaf blight, 80.43% for 

brown spot, 86.67% for healthy, 76.52% for leaf blight, 98.96% for leaf scald, and 93.18% for 

narrow brown spot. These results highlight the effectiveness of the proposed model in 

achieving high accuracy for plant leaf disease classification.     
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Introduction 

 Plant diseases reduce the quality and 

quantity of crops in agriculture worldwide 

(Ristaino et al., 2021; Karthickmanoj et al., 

2024; Gai et al., 2024). These diseases not 

only cause economic losses but also threaten 

global food security, making their 

identification and management essential to 

minimize their impact. Traditional methods 

for plant disease identification rely on visual 

inspection or diagnosis by experienced 

personnel, which is both time-consuming and 

dependent on specialized expertise. These 

methods often fail to provide the speed and 

accuracy required in modern agriculture. In 

resource-limited settings, the reliance on 

manual monitoring further complicates 

disease management, resulting in delays in 

diagnosis and preventive actions. These 

challenges highlight the need for new 

technologies and methods to identify plant 

diseases more quickly, accurately, and 

efficiently. DL has gained significant 

attention for its potential to address these 

limitations by reducing reliance on manual 

inspection and improving the accuracy of 

plant disease diagnosis (Heng et al., 2024; 

Sarkar et al., 2023).  

 In recent years, DL, especially CNN, 

has gained much attention for its ability to 

learn and extract spatial features, making it 

suitable for analyzing plant leaf diseases. 

(Singh et al., 2017) (Mahadevan et al., 2024). 

This has led to significant progress in 

developing techniques for leaf disease 

detection and classification, such as 

(Thaseentaj et al., 2023) proposed a 

customized deep CNN with a deeper structure 

and the ability to learn complex features from 

data to address issues affecting yield and 

quality in mango leaf disease detection and 

classification. (Paul et al., 2023) proposed a 

web and android application has been 

designed to assist farmers with real-time 

classification of tomato leaf diseases. The 

system integrates state-of-the-art VGG16 and 

VGG19 networks, trained using transfer 

learning, and emphasizes data augmentation 

to improve model accuracy. (Hessane et al., 

2023) proposed image analysis combined 

with machine learning, focusing on feature 

extraction based on 80 gray level co-

occurrence matrix and HSV features. It is 

tested with support vector machine, k-nearest 

neighbors, random forest, and light gradient 

boosting machine to detect and classify 

disease outbreak levels. (Ta ji et al., 2024) 

ensemble DL by combining CNN and Local 

Binary Pattern with binary dragonfly, ant 

colony, and moth flame optimization for plant 

leaf disease classification. (Muthusamy et al, 

2024) ensemble learning with CNN by tuning 

parameters in dense layers and combining 

multiple networks using an averaging 

strategy. This approach aims to enhance 

classification efficiency through 

experimentation with three types of networks. 

These studies highlight the potential of CNN 
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in plant disease analysis and classification. 

However, refining and optimizing their 

structure remains crucial for addressing 

challenges in agricultural applications.  

 Despite the advancements in CNN-

based models, existing methods struggle with 

image variations, leading to misclassification. 

This study aims to address these challenges 

by integrating advanced DL components, 

including CN, SE-residual networks, and 

LSTM to improve the model's accuracy and 

learning capability. SE-residual address the 

efficiency degradation in deep networks by 

preserving critical information during 

learning, while CN capture complex 

structures and spatial relationships in data, 

reducing the dependency on large datasets 

and artificial data augmentation. By 

combining these techniques, the model can be 

adapted to more complex data, making it 

particularly effective for agricultural 

applications. 

 

Objectives 

 1. To study DL networks, specifically 

CNN and Capsule Networks, for plant disease 

classification. 

 2. To integrate Capsule Network with 

CNN to improve the accuracy of plant leaf 

disease classification. 

 

 

 

 

Hypothesis  

 1. Noisy leaf characteristics interfere 

with the network's ability to effectively learn 

and classify leaf disease characteristics. 

 2. The integration of Capsule 

Networks with CNN improves training 

efficiency and increases the accuracy of leaf 

disease classification compared to individual 

networks like CNN or other common models. 

 

Expected Benefits  

 1. Enhance the efficiency of DL 

models for accurate plant disease 

classification. 

 2. Provide guidance for developing 

mobile applications for plant leaf disease 

classification systems.   

 

Experimental Method  

 Dataset  

 This study utilized a disease dataset, 

with the rice leaf diseases dataset (RLDD) 

(Singh et al., 2020) was used for 

experimentation. It contains 2,628 rice leaf 

images categorized into six types of diseases: 

bacterial leaf blight (BLB), brown Spot (BS), 

leaf blast (LB), leaf scald (LS), narrow brown 

spot (NBS), and healthy (HE), with each 

category consisting of 428 images, are shown 

in figure 2. The images were organized and 

categorized for training and testing the DL. 

The dataset was divided into a training set 

comprising 80% of the data (60% for training 
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and 20% for validation) and 20% for testing 

set.    

 

 

(a) BLB 

 

(b) BS 

 

(c) LB 

 

(d) LS 

 

(e) NBS 

 

(f) HE 

Figure 1: RLDD dataset. 

 

 Deep Learning Network Design  

 The experimental VGG19 model is 

modified and enhanced to improve its 

processing and learning efficiency, (referred 

to as Modified VGG19), in combination with 

the design approach presented (Zhang et al., 

2024). SE-SK-CapResNet is proposed as an 

artificial neural network (ANN) that 

integrates residual blocks and CN to enhance 

data collection and processing capabilities. 

This architecture is designed to improve 

model performance across all dimensions. 

 Figure 2 illustrates the Modified 

VGG19 model implemented this approach by 

defining convolutional layers, as described in 

Equation 1, with filter sizes of 64, 128, and 

256, increasing progressively in each block to 

capture data features, using 3×3 filters with 

SAME padding to preserve image dimensions 

during computation. For spatial 

dimensionality reduction, a 2×2 

MaxPooling2D layer with a stride of 2 is used 

to highlight significant features. 

 The output is then passed through the 

SE-Residual block, which applies filters of 

sizes 64, 128, and 256 with a stride of 2 to 

enhance the efficiency of feature aggregation 

across multiple channels. The results from the 

SE-Residual block are forwarded to a CN 

layer, configured with 32 capsules and a 

capsule dimension of 8, utilizing 3×3 filters 

with a stride of 2 to capture detailed spatial 

relationships. 

 Subsequently, the data is passed into 

an LSTM layer with 128 units, incorporating 

a dropout rate of 0.2 to prevent overfitting and 

optimize the learning potential of the data 

sequence. Finally, the output is processed by a 

SoftMax layer to convert the results into 

probabilities for classifying the data into 

corresponding categories. 

 

𝑦𝑖,𝑗 =∑∑𝑥(𝑖+𝑚),(𝑗+𝑛) ∙

𝑛

𝑘𝑚,𝑛

𝑚

+ 𝑏 
(1) 

 

When 𝑥(𝑖+𝑚),(𝑗+𝑛) input at position (i+m, 

j+n), 𝑦𝑖,𝑗 is the output at pixel (i, j), 𝑘𝑚,𝑛 

denotes the filter at position (m, n), and b is 

the bias term.  
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Figure 2: Proposed method. 

 

 In this experiment, the researchers 

performed data cleaning (DC) to change 

the characteristics of the experimental 

images by creating a function to detect 

excessive background color levels and 

calculating the ratio of pixels with intensity 

values lower than 30 to pixels in the image 

and comparing it to a threshold value set at 

0.8 of the images, which sets the ratio 

exceeding the threshold value to zero. The 

image after DC shown in figure 3. 

 

 

Figure 3: Image transformed using 

thresholding. 

 

The proposed network was trained using 

the parameters summarized in Table 1.  

 

Table 1: Parameter for training model. 

Parameter Value 

Image size 224x224x3 

Learning rate 10-3 

Epoch 50 

Batch size 64 

Loss function Categorical crossentropy 

Optimization Adam 

 Evaluation 

 Accuracy is used to evaluate training 

efficiency by calculating the ratio of correctly 

predicted samples to the total number of 

samples as: 

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

(2) 

 

 Where true positive (TP) refers to 

the number of correct samples accurately 

predicted by the model, true negative (TN) 

represents the number of incorrect samples 

correctly identified as negative, false 

positive (FP) indicates the number of 
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incorrect samples mistakenly predicted as 

positive, and false negative (FN) denotes 

the number of correct samples that the 

model incorrectly predicts as negative. 

 The confusion matrix was utilized to 

analyze and present the classification results 

of the model, with the outcomes displayed in 

a tabular format for better interpretation 

(Krstinić et al., 2024). 

 

Result 

 Training Performance 

 Figure 4 illustrates the comparative 

performance of models trained on the RLDD 

dataset. The Modified VGG19 model 

achieves the highest performance with an 

accuracy of 89.93%. In contrast, VGG19 

achieves the next highest accuracy at 88.12%. 

 

 

Figure 4: Training performance of RLDD. 

 

 Figure 5 illustrates the comparative 

performance of models trained with DC on 

the RLDD dataset. The Modified VGG19 

model achieves the highest performance 

with an accuracy of 96.01%, demonstrating 

consistent training progress from the initial 

epochs (0–10) and maintaining stability 

throughout the training process. In 

contrast, VGG19 achieves the next highest 

accuracy at 93.98%. 

 

Figure 5: Training performance with DC 

of RLDD. 

 Classification Performance 

 After training, the network was 

tested for its ability to classify plant leaf 

diseases, and the results are presented in 

the confusion matrices shown in figure 4. 

 Figure 6 compares the performance 

of VGG19, and Modified VGG19 models 

in classifying leaf diseases using the 

RLDD dataset, as represented by their 

respective confusion matrices. The 

Modified VGG19, while reducing some 

errors, still exhibited significant challenges 

in classification. It performed relatively 

well in certain groups, such as LS at 

98.96%, and BLB at 93.18%, but showed 

considerable confusion in the HE, BS, LB, 

and BLB groups, limiting its overall 

effectiveness. VGG19 achieved the 

second-highest accuracy, performing well 

in the LS groups with a TP rate of 98.86%. 
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However, it struggled in classifying similar 

data, as reflected by lower TP rates in the 

HE at 80.68%, NBS at 79.55%, BS at 

78.53, and BLB at 73.69% groups, but 

showed considerable confusion in the HE, 

NBS, BS, and BLB groups, limiting its 

overall effectiveness highlighting its 

limitations in distinguishing overlapping 

features. These results demonstrate the 

outstanding performance of the Modified 

VGG19 model in handling complex data 

within high-performance training sets; 

however, improvements are still needed in 

the classification component of the dataset 

to achieve even higher accuracy.  

 

 

(a) CNN (VGG19) 

 

(b) Modified VGG19 

Figure 6: Classification results for the RLDD. 

 

Comparison Performance  

 In this experiment, state-of-the-art 

techniques were evaluated for comparison 

with the proposed method. These included 

ResNet50 (Adnan et al., 2023), ResNet101 

(Sethy et al., 2024), DenseNet121 (Huang et 

al., 2017), and InceptionV3 (Szegedy et al., 

2016), all trained using standardized 

parameters outlined in table 1. The training 

performance is illustrated in figure 5. 

 Figure 7 shows the training results on 

the RLDD dataset. InceptionV3 achieved the 

highest efficiency at 80.87%, with rapid initial 

learning and stable performance. 

DenseNet121 followed at 73.76%, showing 

steady improvement. In contrast, ResNet101 

and ResNet50 had the lowest efficiencies, at 

25.08% and 24.05%. 

 

 

Figure 7: Training performance of DL 

with the RLDD. 

The comparison performance training 

results shown in table 2. 
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Table 2: Comparison performance. 

Model RLDD 

VGG19 93.98% 

Modified VGG19 96.01% 

Resnet50 24.05% 

Resnet101 25.08% 

DenseNet121 73.76% 

InceptionV3 80.87% 

 

When the training model were tested for 

classification performance, shown in figure 8. 

 

 

 

 

 

 

 

(a) ResNet50 

 

(b) ResNet101 

 

(c) DenseNet121 

 

(d) InceptionV3 

Figure 8: Classification results of DL with the RLDD. 

 

 Figure 8, the confusion matrix for 

the RLDD, showing that DenseNet121 and 

InceptionV3 outperform ResNet50 and 

ResNet101. DenseNet121 achieves the 

highest TP rates across groups, including 

LS at 86.26%, NBS at 82.33%, and HE at 
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82.05%, while InceptionV3 performs well 

in NBS at 86.94%, LS at 84.37% and HE 

at 81.44%. In contrast, ResNet50 and 

ResNet101 perform poorly, with ResNet50 

achieving low TP rates in LS at 70.45% 

and BLB at 62.50%, and ResNet101 

struggling in LS at 2.27%, BS at 6.82% 

and LB at 12.50%.  

 

Discussion 

 Plant leaf diseases classification is 

challenging due to the variations in disease 

symptoms, which often lead to 

misclassification. This study presents a 

hybrid DL model for leaf disease training 

and classification. The proposed model 

integrates CN, SE-Residual Blocks, and 

LSTM to enhance training efficiency. The 

design employs an improved convolutional 

operator to efficiently extract features, 

followed by SE-Residual blocks to 

emphasize critical features and address the 

issue of information loss. CN are utilized 

to capture complex structures and spatial 

relationships. The researchers performed DC 

to change the characteristics of the 

experimental images by creating a function to 

detect excessive background color levels and 

calculating the ratio of pixels with intensity 

values lower than 30 to pixels in the image 

and comparing it to a threshold value set at 

0.8 of the images, which sets the ratio 

exceeding the threshold value to zero.  The 

experimental results show that this 

approach outperforms existing models, 

improving classification accuracy and 

overall efficiency. This design expands 

upon the study in (Zhang et al., 2024) to 

further enhance its capabilities. 

 

Conclusion 

 This experiment focuses on 

advancing hybrid DL model for leaf 

disease training and classification. The 

proposed model integrates CN, SE-

Residual Blocks, and LSTM to enhance 

training efficiency. The design employs an 

improved convolutional operator to 

efficiently extract features, followed by 

SE-Residual blocks to emphasize critical 

features and address the issue of 

information loss. 

 The proposed model was trained on 

the RLDD datasets, achieving maximum 

training accuracy of 96.01%. During 

testing, the model demonstrated 

outstanding classification accuracies of 

75.67%, 80.43%, 86.67%, 76.52%, 

98.96%, and 93.18% for BLB, BS, HE, 

LB, LS, and NBS. These results highlight 

the proposed method's superior accuracy 

and efficiency compared to previous 

studies, establishing it as a reliable solution 

for plant leaf disease classification across 

diverse environmental conditions. 

 In the future, research aim to 

development networks capable of 

classification datasets with higher 
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accuracy, ultimately providing an efficient 

and accessible tool for plant leaf disease 

classification in agriculture. 
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