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ABSTRACT

Plant leaf disease classification is challenging due to the wide variation in disease
symptoms and the diverse morphological characteristics of plant leaves. These variations
complicate model training and hinder classification accuracy. This study proposed a hybrid
deep learning (DL) model for leaf disease training and classification. The proposed model
integrates Capsule Networks (CN) for spatial relationship retention, SE-Residual blocks
improve feature extraction while minimizing information loss, and CN capture spatial
relationships with reduced dependency on large datasets, and Long Short-Term Memory
(LSTM) to enhance training efficiency. The proposed model was trained and evaluated using
the Rice Leaf Disease Dataset (RLDD). Its performance was compared with existing state-of-
the-art models. The experimental results showed that the proposed model achieved the highest
training accuracy of 96.01%, classification results 75.67% for bacterial leaf blight, 80.43% for
brown spot, 86.67% for healthy, 76.52% for leaf blight, 98.96% for leaf scald, and 93.18% for
narrow brown spot. These results highlight the effectiveness of the proposed model in

achieving high accuracy for plant leaf disease classification.

KEYWORDS: Plant leaf disease classification, Integration networks, Convolutional neural

network, Deep learning.
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Introduction

Plant diseases reduce the quality and
quantity of crops in agriculture worldwide
(Ristaino et al., 2021; Karthickmanoj et al.,
2024; Gai et al., 2024). These diseases not
only cause economic losses but also threaten
global food security, making their
identification and management essential to
minimize their impact. Traditional methods
for plant disease identification rely on visual
inspection or diagnosis by experienced
personnel, which is both time-consuming and
dependent on specialized expertise. These
methods often fail to provide the speed and
accuracy required in modern agriculture. In
resource-limited settings, the reliance on
manual monitoring further complicates
disease management, resulting in delays in
diagnosis and preventive actions. These
challenges highlight the need for new
technologies and methods to identify plant
diseases more quickly, accurately, and
efficiently,. DL has gained significant
attention for its potential to address these
limitations by reducing reliance on manual
inspection and improving the accuracy of
plant disease diagnosis (Heng et al., 2024,
Sarkar et al., 2023).

In recent years, DL, especially CNN,
has gained much attention for its ability to
learn and extract spatial features, making it
suitable for analyzing plant leaf diseases.
(Singh et al., 2017) (Mahadevan et al., 2024).
This has led to significant progress in

developing techniques for leaf disease
detection and classification, such as
(Thaseentaj et al., 2023) proposed a
customized deep CNN with a deeper structure
and the ability to learn complex features from
data to address issues affecting yield and
quality in mango leaf disease detection and
classification. (Paul et al., 2023) proposed a
web and android application has been
designed to assist farmers with real-time
classification of tomato leaf diseases. The
system integrates state-of-the-art VGG16 and
VGG19 networks, trained using transfer
learning, and emphasizes data augmentation
to improve model accuracy. (Hessane et al.,
2023) proposed image analysis combined
with machine learning, focusing on feature
extraction based on 80 gray level co-
occurrence matrix and HSV features. It is
tested with support vector machine, k-nearest
neighbors, random forest, and light gradient
boosting machine to detect and classify
disease outbreak levels. (Ta ji et al., 2024)
ensemble DL by combining CNN and Local
Binary Pattern with binary dragonfly, ant
colony, and moth flame optimization for plant
leaf disease classification. (Muthusamy et al,
2024) ensemble learning with CNN by tuning
parameters in dense layers and combining
multiple networks using an averaging
strategy. This approach aims to enhance
classification efficiency through
experimentation with three types of networks.
These studies highlight the potential of CNN
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in plant disease analysis and classification.
However, refining and optimizing their
structure remains crucial for addressing
challenges in agricultural applications.

Despite the advancements in CNN-
based models, existing methods struggle with
image variations, leading to misclassification.
This study aims to address these challenges
by integrating advanced DL components,
including CN, SE-residual networks, and
LSTM to improve the model's accuracy and
learning capability. SE-residual address the
efficiency degradation in deep networks by
preserving  critical  information  during
learning, while CN capture complex
structures and spatial relationships in data,
reducing the dependency on large datasets
and artificial data augmentation. By
combining these techniques, the model can be
adapted to more complex data, making it
effective  for

particularly agricultural

applications.

Objectives

1. To study DL networks, specifically
CNN and Capsule Networks, for plant disease
classification.

2. To integrate Capsule Network with
CNN to improve the accuracy of plant leaf

disease classification.

Hypothesis

1. Noisy leaf characteristics interfere
with the network’s ability to effectively learn
and classify leaf disease characteristics.

2. The integration of Capsule
Networks with CNN improves training
efficiency and increases the accuracy of leaf
disease classification compared to individual

networks like CNN or other common models.

Expected Benefits

1. Enhance the efficiency of DL
models  for accurate  plant  disease
classification.

2. Provide guidance for developing
mobile applications for plant leaf disease

classification systems.

Experimental Method

Dataset

This study utilized a disease dataset,
with the rice leaf diseases dataset (RLDD)
(Singh et al, 2020) was wused for
experimentation. It contains 2,628 rice leaf
images categorized into six types of diseases:
bacterial leaf blight (BLB), brown Spot (BS),
leaf blast (LB), leaf scald (LS), narrow brown
spot (NBS), and healthy (HE), with each
category consisting of 428 images, are shown
in figure 2. The images were organized and
categorized for training and testing the DL.
The dataset was divided into a training set

comprising 80% of the data (60% for training
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and 20% for validation) and 20% for testing

set.

(a) BLB (b) BS

(e) NBS (f) HE
Figure 1: RLDD dataset.

Deep Learning Network Design

The experimental VGG19 model is
modified and enhanced to improve its
processing and learning efficiency, (referred
to as Modified VGG19), in combination with
the design approach presented (Zhang et al.,
2024). SE-SK-CapResNet is proposed as an
artificial  neural network (ANN) that
integrates residual blocks and CN to enhance
data collection and processing capabilities.
This architecture is designed to improve
model performance across all dimensions.

Figure 2 illustrates the Modified
VGG19 model implemented this approach by
defining convolutional layers, as described in
Equation 1, with filter sizes of 64, 128, and

256, increasing progressively in each block to

capture data features, using 3x3 filters with
SAME padding to preserve image dimensions
during computation. For spatial
dimensionality reduction, a 2%2
MaxPooling2D layer with a stride of 2 is used
to highlight significant features.

The output is then passed through the
SE-Residual block, which applies filters of
sizes 64, 128, and 256 with a stride of 2 to
enhance the efficiency of feature aggregation
across multiple channels. The results from the
SE-Residual block are forwarded to a CN
layer, configured with 32 capsules and a
capsule dimension of 8, utilizing 3x3 filters
with a stride of 2 to capture detailed spatial
relationships.

Subsequently, the data is passed into
an LSTM layer with 128 units, incorporating
a dropout rate of 0.2 to prevent overfitting and
optimize the learning potential of the data
sequence. Finally, the output is processed by a
SoftMax layer to convert the results into
probabilities for classifying the data into
corresponding categories.

Vij = Z Z X(i+m),(i+n) *Kmn + Db @)
m n

WHhen X(j4m),j+n) iNput at position (i+m,
j+n), y;; is the output at pixel (i, j), kmn
denotes the filter at position (m, n), and b is

the bias term.
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Figure 2: Proposed method.

In this experiment, the researchers
performed data cleaning (DC) to change
the characteristics of the experimental
images by creating a function to detect

excessive background color levels and

Table 1: Parameter for training model.

calculating the ratio of pixels with intensity
values lower than 30 to pixels in the image
and comparing it to a threshold value set at
0.8 of the images, which sets the ratio
exceeding the threshold value to zero. The

image after DC shown in figure 3.

Figure 3: Image transformed using

thresholding.

The proposed network was trained using

the parameters summarized in Table 1.

Parameter Value
Image size 224x224x3
Learning rate 10
Epoch 50
Batch size 64

Loss function

Optimization

Categorical crossentropy
Adam

Evaluation

Accuracy is used to evaluate training
efficiency by calculating the ratio of correctly
predicted samples to the total number of

samples as:

TP + TN @)
TP + FP + TN + FN

Accuracy =

Where true positive (TP) refers to
the number of correct samples accurately
predicted by the model, true negative (TN)
represents the number of incorrect samples
correctly identified as negative, false

positive (FP) indicates the number of
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incorrect samples mistakenly predicted as
positive, and false negative (FN) denotes
the number of correct samples that the
model incorrectly predicts as negative.

The confusion matrix was utilized to
analyze and present the classification results
of the model, with the outcomes displayed in
a tabular format for better interpretation
(Krstini¢ et al., 2024).

Result

Training Performance

Figure 4 illustrates the comparative
performance of models trained on the RLDD
dataset. The Modified VGG19 model
achieves the highest performance with an
accuracy of 89.93%. In contrast, VGG19

achieves the next highest accuracy at 88.12%.

% 40
Epochs

Figure 4: Training performance of RLDD.

Figure 5 illustrates the comparative
performance of models trained with DC on
the RLDD dataset. The Modified VGG19
model achieves the highest performance
with an accuracy of 96.01%, demonstrating
consistent training progress from the initial

epochs (0-10) and maintaining stability
throughout the training process. In
contrast, VGG19 achieves the next highest
accuracy at 93.98%.

Training Performance

—o— VGG19: 93.96%
Proposed: 96.01%

0 10 20 0 40

Figure 5: Training performance with DC
of RLDD.

Classification Performance

After training, the network was
tested for its ability to classify plant leaf
diseases, and the results are presented in
the confusion matrices shown in figure 4.

Figure 6 compares the performance
of VGG19, and Modified VGG19 models
in classifying leaf diseases using the
RLDD dataset, as represented by their
respective  confusion  matrices. The
Modified VGG19, while reducing some
errors, still exhibited significant challenges
in classification. It performed relatively
well in certain groups, such as LS at
98.96%, and BLB at 93.18%, but showed
considerable confusion in the HE, BS, LB,
and BLB groups, limiting its overall
effectiveness. VGG19 achieved the
second-highest accuracy, performing well

in the LS groups with a TP rate of 98.86%.
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However, it struggled in classifying similar
data, as reflected by lower TP rates in the
HE at 80.68%, NBS at 79.55%, BS at
78.53, and BLB at 73.69% groups, but
showed considerable confusion in the HE,
NBS, BS, and BLB groups, limiting its
overall effectiveness highlighting its
limitations in distinguishing overlapping

Confusion Matrix for Plant Leaf Disease Classification

g I 15.79% 0.00% 5.26% 5.26% 0.00%

0.00% 8.26% 10.58% 0.00% 2.63%
0.00% 0.00% 19.32% 0.00% 0.00%
0.00% 26.14% 7.95% M 0.00% 0.00%
0.00% 0.00% 0.00% 1.14% 0.00%
0.00% 18.18% 0.00% 2.27% 0.00%

BLB BS HE LB LS NBS
Predicted Label

(a) CNN (VGG19)

True Label
LB HE BS

LS

NBS

features. These results demonstrate the
outstanding performance of the Modified
VGG19 model in handling complex data
within high-performance training sets;
however, improvements are still needed in
the classification component of the dataset

to achieve even higher accuracy.

Confusion Matrix for Plant Leaf Disease Classification

g YEIE 9.15% 2.03% 6.23% 579% 1.14%

@ 153% [GUEEPM 4.55% 6.82% 0.00% 6.68%

60
Y 062% 1.04% EEEIEA 11.68% 0.00% 0.00%

Q  1.04% 18.32% 3.04% RGEFEA 0.00% 1.09% )

True Label

» 1.05% 0.00% 0.00% 0.00%
s |

0.00% 4.14% 0.00% 0.00% 2.69%

NBS

BLB BS HE LB Ls NBS
Predicted Label

(b) Modified VGG19

Figure 6: Classification results for the RLDD.

Comparison Performance

In this experiment, state-of-the-art
techniques were evaluated for comparison
with the proposed method. These included
ResNet50 (Adnan et al., 2023), ResNet101
(Sethy et al., 2024), DenseNet121 (Huang et
al.,, 2017), and InceptionVV3 (Szegedy et al.,
2016), all trained using standardized
parameters outlined in table 1. The training
performance is illustrated in figure 5.

Figure 7 shows the training results on
the RLDD dataset. InceptionV3 achieved the
highest efficiency at 80.87%, with rapid initial
learning and stable performance.

DenseNet121 followed at 73.76%, showing

steady improvement. In contrast, ResNet101
and ResNet50 had the lowest efficiencies, at
25.08% and 24.05%.

Training Performance

10 —%— ResNet50: 24.05%
ResNet101: 25.08%

—&— DenseNet121: 73.76%
—— InceplionV3: B0.87%

Figure 7: Training performance of DL
with the RLDD.
The comparison performance training

results shown in table 2.
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Table 2: Comparison performance.
Model
VGG19
Modified VGG19
Resnet50
Resnet101
DenseNet121

RLDD

93.98%
96.01%
24.05%
25.08%
73.76%
80.87%

InceptionV3

When the training model were tested for

classification performance, shown in figure 8.

Confusion Matrix for RLDD Confusion Matrix for RLDD

0
LY
; 000% 000% 0.00% 0.00% g EEECEA 000% 0.00% 000% 227% [REELEA
0 n
2 EEELE 000% 14.77% 2841% 795% 000% @ 2045% 682% EVLEA 909% 000% 21.59% -
0
T Y 2386% 000% 10.23% 568% 0.00% o TY 114% 568% EEREE 114% 000% 19.32% ol
g : o
o o
E g 000% 27.27% 26.14% 11.36% 0.00% =) S g 17.05% 1250% EEEFM 1250% 000% 13.64%
-
o [2086% 000% 000% 000% [EEEEME 000% 2 O 11.36% 341% 000% 000% 227% [CEEKE 2
-10 @ 10
2 EBEEY 000% 000% 000% [EIEEZE 000% g 1477% 341% 000% 000% 1.14%
z
-0 0
BLB BS HE LB Ls NBS BLB BS HE LB Ls
Predicted Label Predicted Label
Confusion Matrix for RLDD Confusion Matrix for RLDD
g 000% 0.00% 1462% 11.52% ; 0.00% 0.00% 0.00% 13.41% 11.72%
o0 0
o 3.26% [CCRAEM 4.34% 1382% 000% 10.38% ) 435% 250% 0.00% 3.27%
By 124% % [EZRLEA 1568% 0.00% 0.00% - TY 000% 6.35% 0.00% 0.00% «
3 3
S 360% 26.89% 13.64% [EGKLEA 144% B.06% Lo S8 551% 1555% 12.06% [EEEGPM 4.55% 3.77% ©

@ 11.14% 260% 0.00% 0.00% 0.00%

Ls

0.00% 0.00% 0.00% 0.00%

@ 752% 107% 0.00% 0.00% 9.09% 568% 0.00% 0.00% 1.25%
z

NBS

BLB BS HE LB Ls NBS BLB BS HE LB
Predicted Label Predicted Label

(c) DenseNet121 (d) InceptionV3
Figure 8: Classification results of DL with the RLDD.

ResNet101. DenseNetl21 achieves the
highest TP rates across groups, including
LS at 86.26%, NBS at 82.33%, and HE at

Figure 8, the confusion matrix for
the RLDD, showing that DenseNet121 and
InceptionV3 outperform ResNet50 and
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82.05%, while InceptionV3 performs well
in NBS at 86.94%, LS at 84.37% and HE
at 81.44%. In contrast, ResNet50 and
ResNet101 perform poorly, with ResNet50
achieving low TP rates in LS at 70.45%
and BLB at 62.50%, and ResNetl101
struggling in LS at 2.27%, BS at 6.82%
and LB at 12.50%.

Discussion

Plant leaf diseases classification is
challenging due to the variations in disease
symptoms, which  often lead to
misclassification. This study presents a
hybrid DL model for leaf disease training
and classification. The proposed model
integrates CN, SE-Residual Blocks, and
LSTM to enhance training efficiency. The
design employs an improved convolutional
operator to efficiently extract features,
followed by SE-Residual blocks to
emphasize critical features and address the
issue of information loss. CN are utilized
to capture complex structures and spatial
relationships. The researchers performed DC
to change the characteristics of the
experimental images by creating a function to
detect excessive background color levels and
calculating the ratio of pixels with intensity
values lower than 30 to pixels in the image
and comparing it to a threshold value set at
0.8 of the images, which sets the ratio
exceeding the threshold value to zero. The
experimental results show that this

approach outperforms existing models,
improving classification accuracy and
overall efficiency. This design expands
upon the study in (Zhang et al., 2024) to

further enhance its capabilities.

Conclusion

This  experiment focuses on
advancing hybrid DL model for leaf
disease training and classification. The
proposed model integrates CN, SE-
Residual Blocks, and LSTM to enhance
training efficiency. The design employs an
improved convolutional operator to
efficiently extract features, followed by
SE-Residual blocks to emphasize critical
features and address the issue of
information loss.

The proposed model was trained on
the RLDD datasets, achieving maximum
training accuracy of 96.01%. During
testing,  the model demonstrated
outstanding classification accuracies of
75.67%, 80.43%, 86.67%, 76.52%,
98.96%, and 93.18% for BLB, BS, HE,
LB, LS, and NBS. These results highlight
the proposed method's superior accuracy
and efficiency compared to previous
studies, establishing it as a reliable solution
for plant leaf disease classification across
diverse environmental conditions.

In the future, research aim to
networks

development capable  of

classification  datasets  with  higher
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accuracy, ultimately providing an efficient classification in agriculture.

and accessible tool for plant leaf disease
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