บทความวิจัย

ผลเฉลยที่ไม่เป็นจำนวนเต็มลบของสมการไดโอแฟนไทน์ $15^{\times} + 51^{y} = z^{2}$

มนตรี ทองมูล^{1,*} ศศิธร ปัจจุโส² และธนา นันทิกาญจนะ²

¹ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหาสารคาม จังหวัดมหาสารคาม ²สาขาวิชาศึกษาทั่วไป คณะศิลปศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลรัตนโกสินทร์ วิทยาเขตวังไกลกังวล จังหวัดประจวบคีรีขันธ์ *Email: montri.t@msu.ac.th

รับบทความ: 24 กันยายน 2564 แก้ไขบทความ: 21 ตุลาคม 2564 ยอมรับตีพิมพ์: 24 ตุลาคม 2564

บทคัดย่อ

ในบทความนี้ เราได้ศึกษาผลเฉลยที่ไม่เป็นจำนวนเต็มลบของสมการไดโอแฟนไทน์ $15^x + 51^y = z^2$ โดยที่ x, y และ z เป็นจำนวนเต็มที่ไม่เป็นลบ พบว่า คำตอบของสมการไดโอแฟนไทน์มีผลเฉลยที่ไม่เป็นจำนวนเต็มลบเพียงผลเฉลยเดียว คือ (x, y, z) = (1, 0, 4)

คำสำคัญ: สมการไดโอแฟนไทน์เอกโพเนนเชียล ข้อคาดกา<mark>รณ์ของ</mark>คาตาลัน

อ้างอิงบทความนี้

มนตรี ทองมูล ศศิธร ปัจจุโส และธนา นันทิกาญจนะ. (2564). ผลเฉลยที่ไม่เป็นจำนวนเต็มลบของสมการไดโอแฟนไทน์ $15^{\times} + 51^{y} = z^{2}$. วารสารวิทยาศาสตร์และวิทยาศาสตร์ศึกษา, 4(2), 172 - 177.

Research Article

The non-negative integer solutions of Diophantine equation $15^x + 51^y = z^2$

Montri Thongmoon^{1,*}, Sasitorn Putjuso² and Thana Nuntigrangjana²

¹Department of Mathematics, Faculty of Science, Mahasarakham University, Mahasarakham ²School of general science, Faculty of Liberal Art, Rajamangala University of Technology Rattanakosin, Wang Klai Kangwon Campus, Prachuapkhirikhan *Email: montri.t@msu.ac.th

Received <21 September 2021>; Revised <21 October 2021>; Accepted <24 October 2021>

Abstract

In this paper, we study non-negative integer solutions of Diophantine equation $15^x + 51^y = z^2$ where x, y and z are non-negative integers. We show that the Diophantine equation has only one solution (x, y, z) = (1, 0, 4) in non-negative integers.

Keywords: Exponential Diophantine equation, Catalan's conjecture

Cite this article:

Thongmoon, M., Putjuso, S. and Nuntigrangjana, T. (2021). The non-negative integer solutions of Diophantine equation $15^x + 51^y = z^2$. Journal of Science and Science Education, 4(2), 172 - 177.

Introduction

The Diophantine equations of type $a^x + b^y = c^z$ have been studied (Acu, 2005; Acu, 2007; Suvarnamani, Singta and Chotchaisthit, 2011; Sroysang, 2012a; Sroysang, 2012b; Sroysang, 2012c; Sroysang, 2013; Rabago, 2013a; Rabago, 2013b; Rabago, 2013c; Rabago, 2013d; Rabago, 2013e). In 2005 (Acu, 2005), Acu studied Diophantine equations of type $a^x + b^y = c^z$ for primes a and b. In 2007 (Acu, 2007), Acu studied Diophantine equations $2^x + 5^y = z^2$. In 2008 (Pumnea and Nicoar; 2008), Pumnea et al. studied Diophantine equations of the form $a^x + b^y = z^2$, for example: $2^x + 7^y = z^2$, $2^x + 11^y = z^2$ and $2^x + 13^y = z^2$ and. In 2011 (Suvarnamani, 2011), Suvarnamani studied Diophantine equation $2^x + p^y = z^2$ where p is prime number which more than 2, he found that (i) For each prime number p, this equation has a solution (x, y, z) = (3, 0, 3), (ii) For p = 3, the Diophantine equation this equation has a solution (x, y, z) = (4, 2, 5) and (iii) For $p = 1 + 2^{k+1}$ where k is nonnegative integer, this equation has a solution (x, y, z) = (2k, 1, 1+2k). In 2011 (Suvarnamani, Singta and Chotchaisthit, 2011), Suvarnamani et al. studied Diophantine two equations $4^x + 7^y = z^2$ and $4^x + 11^y = z^2$. In 2012-2013, Sroysang published series of papers in relation to the Diophantine equation $a^x + b^y = c^z$ (Sroysang, 2012a; Sroysang, 2012; Sroysang, 2012c; Sroysang, 2013). In 2013 (Rabago, 2013c), Rabago gave all solutions to several Diophantine equations of type $p^x + q^y = z^2$, for examples: $5^x + 31^y = z^2$, $7^x + 29^y = z^2$, $13^x + 23^y = z^2$ z^2 , $47^x + 97^y = z^2$ and $61^x + 83^y = z^2$. In 2013 (Rabago, 2013d), Rabago studied the two Diophantine equations $3^{x} + 19^{y} = z^{2}$ and $3^{x} + 91^{y} = z^{2}$. In the same year (Rabago, 2013e), Rabago studied the two Diophantine equations $17^x + 19^y = z^2$ and $71^x + 73^y = z^2$. In most of these papers, the authors used theory of congruence and/or Catalan's conjecture to find all solutions, or to show the non-existence of solutions to the Diophantine equations of type $p^x + q^y = z^2$. In 2014 (Sroysang, 2014), Sroysang studied the Diophantine equation $46^x + 64^y$ $= z^2$, he used theory of congruence and/or Catalan's conjecture to find all solutions, or to show the nonexistence of solutions and he found that this equation has no non-negative integers solution. Furthermore, he posed some open problem about the Diophantine equation in the form $m^x + n^y = z^2$ where m = 10a + b, n = 10b + a with a, b are in {0, 1, 2, ..., 9}. We see that there are many Diophantine equations in the previous form. In 2021 (Ngarm-pong, Raumtum and Thongmoon, 2021), Ngarm-pong et al. studied the Diophantine equation $13^x + 31^y = z^2$, they found that this equation has no solution in non-negative integers.

In this paper, we study the Diophantine equation

$$15^{x} + 51^{y} = z^{2}$$
 (1)

Where x, y and z are non-negative integers. This equation is one type of Sroysang's open problem.

Preliminaries

Proposition 2.1 (Catalan's conjecture) (Mihailescu, 2004) (3, 2, 2, 3) is a unique solution (a, b, x, y) for the Diophantine equation $a^x - b^y = 1$ where a, b, x and y are non-negative integers with min{a, b, x, y} > 1.

Main Results

Lemma 3.1 The Diophantine equation $15^x + 1 = z^2$ has only one solution (x, z) = (1, 4) in non-negative integer. **Proof.** Let x and z be non-negative integers. Clearly, when x = 0 and z = 0. Then we will consider in case x > 0 by divided into two cases:

Case 1. If x = 1, then Diophantine equation $15^x + 1 = z^2$ becomes $z^2 = 16$. So z = 4, then we get that (x, z) = (1, 4) is a non-negative integers solution of Diophantine equation $15^x + 1 = z^2$.

Case 2. If x > 1, We see that $15^x = z^2 - 1 = (z - 1)(z + 1)$. Assume that $z - 1 = 15^u$ and $z + 1 = 15^{x-u}$ where u is non-negative integer and x > 2u. Then

$$15^{x-u} - 15^{u} = (z + 1) - (z - 1) = 2.$$

We see that

$$15^{u}(15^{x-2u}-1)=2.$$

We will consider two subcases:

Subcase 2.1 If $15^{u} = 1$ and $15^{x-2u} - 1 = 2$, we imply that u = 0 and $15^{x} - 1 = 2$. We have that $15^{x} = 3$, this is impossible.

Subcase 2.2 If $15^{u} = 2$ and $15^{x-2u} - 1 = 1$. This is impossible.

From Case 1. and Case 2., the Diophantine equation $15^x + 1 = z^2$ has only one solution (x, z) = (1, 4) in nonnegative integers.

Lemma 3.2 The Diophantine equation $51^{x} + 1 = z^{2}$ has no solution in non-negative integer.

Proof. Let x and z be non-negative integers. Clearly, when x = 0 and z = 0. From $51^x + 1 = z^2$ we see that z^2 - 51^x = 1. By Catalan's conjecture, this equation has no non-negative solution when min{z, 2, 51, x} > 1. Since x and z are non-negative integers. We will consider two cases as follows:

Case 1. If z = 1, then we get $51^x = 0$ which has no non-negative solution.

Case 2. If x = 1, then we get $z^2 - 51^x = 1$. This imply that $z^2 = 52$ which has no non-negative solution. Therefore, the Diophantine equation $51^x + 1 = z^2$ has no solution in non-negative integer.

Theorem 3.3 The Diophantine equation (1) has only one solution (x, y, z) = (1, 0, 4) in non-negative integers. **Proof.** Let x, y and z be non-negative integers. Clearly, if z = 0, then the Diophantine equation $15^x + 51^y = 0$ has no solution (x, y) in non-negative integers. Now, let z > 0 and we will consider in three cases:

Case 1. If x = 0, then the Diophantine equation (1) can be written as $1 + 51^y = z^2$. By Lemma 3.2, this equation has no non-negative integer solutions.

Case 2. If y = 0, then the Diophantine equation (1) can be written as $15^x + 1 = z^2$. By Lemma 3.1, this has only one solution (x, z) = (1, 4) in non-negative integer. Therefore (x, y, z) = (1, 0, 4) is a non-negative integer solution of the Diophantine equation (1).

Case 3. If xy > 0, then we will consider in two subcases:

Subcase 3.1 If x is even, assume that x = 2k for some non-negative integer k. Then the Diophantine equation (1) can be written as

$$15^{2k} + 51^y = z^2$$

i.e.,

$$51^y = z^2 - 15^{2k} = (z-15^k)(z+15^k)$$

Assume that $z - 15^k = 51^u$ and $z + 15^k = 51^{y-u}$ where u is non-negative integer and y > 2u. Then $51^{y-u} - 51^u = 2(15^k)$.

We see that

$$51^{u}(51^{y-2u}-1)=2(15^{k}).$$

We will consider in four subcases:

Subcase 3.1.1 If $51^u = 1$ and $51^{y-2u} = 2(15^k)$, we imply that u = 0 and $51^y - 1 =$ $2(15^k)$. We have that $50(51^{y-1} + 51^{y-2} + ... + 51 + 1) = 2(15^k)$. Then we get $25t = 15^k$ where $t = 51^{y-1} + 51^{y-2} + ... + 5$...+ 51 + 1. We see that $t \equiv 1 \pmod{3}$. Then $5^2t = 3^k5^k$. This is impossible because $5^2t = 1 \pmod{3}$ but $3^k5^k \equiv 1 \pmod{3}$ 0 (mod 3).

Subcase 3.1.2 If $51^{u} = 2$ and $51^{y-2u} - 1 = 15^{k}$, this is impossible.

Subcase 3.1.3 If $51^{u} = 15^{k}$ and $51^{y-2u} - 1 = 2$, this is impossible.

Subcase 3.1.4 If $51^u = 2(15^k)$ and $51^{y-2u} - 1 = 1$, this is impossible.

Subcase 3.2 If x is odd, then x = 2k + 1 for some non-negative integer k. Then the Diophantine equation (1) becomes:

$$15^{2k+1} + 51^y = z^2$$

we will consider in two subcases:

Subcase 3.2.1 If y is even, then y = 2m for some positive integer m.

Then the Diophantine equation (1) becomes:

$$15^{2k+1} + 51^{2m} = z^2$$

i.e.,

$$15^{2k+1} = z^2 - 51^{2m} = (z - 51^m)(z + 51^m).$$

We will consider in four subcases:

Subcase 3.2.1.1 If
$$z - 51^m = 1$$
 and $z + 51^m = 15^{2k+1}$, then $15^{2k+1} - 1 = 2(51^m)$.

We have that $14(15^{2k} + 152k-1 + ... + 15 + 1) = 2(51^m)$. Then we get $7t = 51^m$

Where $t = 15^{2k} + 15^{2k-1} + ... + 15 + 1$. Since $7t \equiv 0 \pmod{7}$, then $51^m \equiv 0 \pmod{7}$. Contradiction to $51^m \equiv 1, 2, 4 \pmod{7}$.

Subcase 3.2.1.2 If
$$z - 51^m = 15$$
 and $z + 51^m = 15^{2k}$, then $15^{2k} - 15 = 2(51^m)$.

We have that $15(15^{2k-1} - 1) = 2(51^m)$. Since $15(15^{2k-1} - 1) \equiv 0 \pmod{5}$, then $2(51^m) \equiv 0 \pmod{5}$. Contradiction to $2(51^m) \equiv 2 \pmod{5}$.

Subcase 3.2.1.3 If
$$z - 51^m = 15^{2k}$$
 and $z + 51^m = 15$, then $15 - 15^{2k} = 2(51^m)$.

We have that $15(1 - 15^{2k-1}) = 2(51^m)$. Since $15(1 - 15^{2k-1}) \equiv 0 \pmod{5}$, then $2(51^m) \equiv 0 \pmod{5}$. Contradiction to $2(51^m) \equiv 2 \pmod{5}$.

Subcase 3.2.1.4 If
$$z - 51^m = 15^{2k+1}$$
 and $z + 51^m = 1$, then $1 - 15^{2k+1} = z + 1$

 $51^{m} = 2(51^{m})$. This is impossible because that LHS is negative integer, but RHS is positive integer.

Subcase 3.2.2 If y is odd, then y = 2m + 1 for some non-negative integer m. Then the Diophantine equation (1) becomes: $15^{2k+1} + 51^{2m+1} = z^2$ we see that z^2 and z are also evens. Then z is either in the form 4s or 4s+2 for some non-negative integer s. So we will consider in two subcases:

Subcase 3.2.2.1 If z = 4s, then we get that $15^{2k+1} + 51^{2m+1} = 16s^2$. Since

 $15^{2k+1} + 51^{2m+1} \equiv 2 \pmod{4}$, then $16s^2 \equiv 2 \pmod{4}$. Contradiction to $16s^2 \equiv 0 \pmod{4}$.

Subcase 3.2.2.2 If z = 4s+2, then we get that $15^{2k+1} + 51^{2m+1} = 16s^2 + 16s + 16$

4. Since $15^{2k+1} + 51^{2m+1} \equiv 2 \pmod{4}$, then $16s^2 + 16s + 4 \equiv 2 \pmod{4}$. Contradiction to $16s^2 + 16s + 4 \equiv 0 \pmod{4}$.

From Case 1.,2. and Case 3., we have that the Diophantine equation (1) has only one solution (x, y, z) = (1, 0, 4) in non-negative integers. The proof is completed.

Theorem 3.4 Let $n \ge 2$ be a positive integer. Then the Diophantine equation $15^x + 51^y = w^{2n}$ has only one solution (x, y, w, n) = (1, 0, 2, 2) in non-negative integers.

Proof. Let $n \ge 2$ be a positive integer and w, x, y be non-negative integers. Assume that $z = w^n$, then the Diophantine equation $15^x + 51^y = w^{2n} = z^2$. By Theorem 3.3, we see that z = 4. Then $w^n = 4$ and we see that w = 4 and v = 1 or v = 2 and v = 2. By assumption v = 2, then we get that v = 2 and v = 2. Thus, the Diophantine equation v = 2 has only one solution v = 2, v = 2 in non-negative integers.

Conclusion

In this paper, we show that the Diophantine equation $15^x + 51^y = z^2$ has only one solution (x, y, z) = (1, 0, 4) in non-negative integers. Furthermore, there are many Diophantine equations in the form $m^x + n^y = z^2$ where m = 10a + b, n = 10b + a with a, b are in {0, 1, 2, ..., 9}. The methods to find non-negative solutions of them are still open problems.

Acknowledgement

This work was financially supported by Rajamangala University of Technology Rattanakosin, Wang Klai Kangwon Campus, Thailand (Grant No. GKN001/2560).

References

- Mihailescu P. (2004). Primary cycolotomic units and a proof of Catalan's conjecture. Journal für die reine und angewandte Mathematik, 27, 167-195
- Acu D. (2005). On a Diophantine equations of type $a^x + b^y = c^z$. General Mathematics, 13(1), 67-72.
- Acu D. (2007). On a Diophantine equation $2^x + 5^y = z^2$. General Mathematics, 15(4), 145-148.
- Suvarnamani, A. (2011). Solutions of the diophantine equation $2^x + p^y = z^2$. International Journal of Mathematical Sciences and Applications, 1(3), 1415-1419.
- Suvarnamani, A., Singta, A., and Chotchaisthit, S. (2011). On two Diophantine Equations $4^x + 7^y = z^2$ and $4^x + 1$ $7^{y} = z^{2}$. Science and Technology RMUTT Journal, 1, 25-28.
- Sroysang, B. (2012a). More on the Diophantine Equation $8^x + 19^y = z^2$. International Journal of Pure and Applied Mathematics, 81(4), 601-604.
- Sroysang, B. (2012b). On the Diophantine Equation $31^x + 32^y = z^2$. International Journal of Pure and Applied Mathematics, 81(4), 609-612.
- Sroysang, B. (2012c). On the diophantine equation $3^x + 5^y = z^2$. International Journal of Pure and Applied Mathematics, 81(4), 605-608.
- Sroysang, B. (2013). On the diophantine equation $3^{x} + 17^{y} = z^{2}$. International Journal of Pure and Applied Mathematics, 89(1), 111-114.
- Sroysang, B. (2014). On the diophantine equation $\frac{46^x}{64^y} = z^2$. International Journal of Pure and Applied Mathematics, 91(1), 399-402.
- Rabago, J.F.T. (2013a). On an Open Problem by B. Sroysang, Konuralp. Journal of Mathematics, 1(2), 3032.
- Rabago, J.F.T. (2013b). A Note on an Open Problem by B. Sroysang. Science and Technology RMUTT Journal, 3(1), 41-43.
- Rabago, J.F.T. (2013c). More on Diophantine Equations of Type $p^x + q^y = z^2$. International Journal of Mathematics and Scientific Computing, 3(1), 15-16.
- Rabago, J.F.T. (2013d). On Two Diophantine Equations $3^x + 19^y = z^2$ and $3^x + 91^y = z^2$. International Journal of Mathematics and Scientific Computing, 3(1), 28-29.
- Rabago, J.F.T. (2013e). On Two Diophantine Equations $17^x + 19^y = z^2$ and $71^x + 73^y = z^2$. International Journal of Mathematics and Scientific Computing, 2(1), 19-24.
- Pumnea, C.E. and Nicoar, A.D. (2008). On a diophantine equation of $a^x + b^y = z^2$. Educatia Matematica, 4(1),
- Ngarm-pong, S., Raumtum, W. and Thongmoon, M. (2021). The solution of diophantine equation $13^{x} + 31^{y} =$ z^2 . Science and Technology RMUTT Journal, Submitted.

