

JSSE

JOURNAL OF SCIENCE & SCIENCE EDUCATION Vol. 8 No. 1 (Jan. – Jun. 2025): 152-167
Faculty of Science, Ubon Ratchathani University http://doi.org/10.14456/jsse.2025.13

Copyright by Faculty of Science, Ubon Ratchathani University

Empirical Comparison of Root-Finding Algorithms between Classical Methods

and Hybrid Method

Jiratchaya Jaisaardsuetrong1 and Wasana Ngaogate1,*
1Department of Mathematics, Statistics and Computer, Faculty of Science, Ubon Ratchathani University

*Email: wasana.n@ubu.ac.th

Received <6 November 2024>; Revised <17 February 2025>; Accepted <18 February 2025 >

Abstract

This research presents a novel method derived from combination of traditional techniques, namely

the Bisection method, False position method and Edmond- Halley’ s method, to enhance the efficiency of

root finding algorithms. The research also compares the performance of this traditional methods with the

new hybrid method by coding in Python. The results show that the new method demonstrates superior

efficiency than the classical methods. Furthermore, a classe’s structure based on the strategy design pattern

was developed for code implementation, facilitating systematic coding and improving maintainability and

scalability of the algorithms.

Keywords: Bisection method; False position method; Edmond-Halley’s method; Hybrid method;

 Strategy design pattern

Research Article in Science

mailto:wasana.n@ubu.ac.th

วารสารวิทยาศาสตรและวิทยาศาสตรศึกษา ปท่ี 8 เลมท่ี 1 (ม.ค. – มิ.ย. 2568) | 153

ลิขสิทธ์ิโดย คณะวิทยาศาสตร มหาวิทยาลัยอุบลราชธานี

การเปรียบเทียบเชิงประจักษของอัลกอริธึมการหารากระหวางวิธีดั้งเดิมและวธิีผสม

จิรัชยา ใจสะอาดซ่ือตรง1 และวาสนา เหงาเกษ1,*
1ภาควิชาคณิตศาสตร สถิติ และคอมพิวเตอร คณะวิทยาศาสตร มหาวิทยาลัยอบุลราชธาน ี

*Email: wasana.n@ubu.ac.th

บทคัดยอ

การวิจัยน้ีนําเสนอวิธีการใหมท่ีพัฒนาข้ึนจากการผสมผสานเทคนิคดั้งเดมิ ไดแก วิธีแบงครึ่งชวง วิธีแกตําแหนงผิด และ

วิธีของเอ็ดมอนด-ฮัลเลย เพ่ือเพ่ิมประสิทธิภาพของอัลกอริธึมในการหาคาราก การวิจัยยังเปรียบเทียบประสิทธิภาพของวิธีการ

แบบดั้งเดิมเหลาน้ีกับวิธีผสมใหมโดยการเขียนโคดในภาษาไพธอน ผลการวิจัยแสดงใหเห็นวาวิธีการใหมมีประสิทธิภาพสูงกวา

วิธีการแบบดั้งเดิม นอกจากน้ี ยังไดพัฒนาโครงสรางของคลาสท่ีอิงกับการออกแบบแบบรูปกลยุทธ เพ่ือการนําโคดไปใชท่ีอยาง

เปนระบบ เพ่ือชวยเพ่ิมความสามารถในการบํารุงรักษาและการขยายตัวของอัลกอริธึม

คําสําคัญ: วิธีแบงครึ่งชวง; วิธีแกตําแหนงผิด; วิธีของเอ็ดมอนด-ฮลัเลย; วิธีผสม; แบบรูปกลยุทธ

บทความวิจัยทางวิทยาศาสตร

mailto:wasana.n@ubu.ac.th

154 | Journal of Science and Science Education Vol. 8 No. 1 (Jan. – Jun. 2025)

Copyright by Faculty of Science, Ubon Ratchathani University

Introduction

In solving the equation f(x) = 0, sometimes it is not possible to find the solution directly, as the
equation might be difficult to solve. However, there are numerical methods that can approximate the root.
The simplest method is the bisection method, which involves dividing the interval in half. Another widely
used method is Newton's method, which uses the slope of the graph and an initial reference point to
approximate the root. Another method is the false position method. There are several research articles that
study the approximation of roots. Gemechu and Thota (2020) , proposed new iterative algorithms aimed at
determining the roots of nonlinear transcendental equations. These algorithms utilize nonlinear Taylor
polynomial interpolation combined with a modified error correction term grounded in fixed-point principles.
Furthermore, the study examines the potential to extend these higher- order iterative methods from single-
variable cases to higher dimensions. Jun and Jeon (2019), extended the bisection method to solve nonlinear
equations. The paper discusses convergence properties and iteration counts, and includes visual graphs.
Sabharwai (2019) , proposed a dynamic blend of the bisection method and the regula falsi (false position)
method to enhance the performance of root- finding algorithms. The blended algorithm demonstrated
superior performance, requiring fewer computational steps to converge and offering a robust solution for
root- finding problems where classical methods may struggle. Tanakan (2013) , presented a computational
algorithm that enhances the traditional bisection method for solving nonlinear equations, with the goal of
increasing both efficiency and accuracy in root approximation. Burden and Faires (2021) , introduced hybrid
algorithm that combines the strengths of the trisection method and the false position method. The results
show that the proposed algorithm surpasses the secant, trisection, Newton- Raphson, bisection, and regula
falsi methods, in terms of both iterations count and average runtime. Bogdanov and Volkov (2013), modified
quadratic interpolation method for finding the roots of a continuous function is proposed, focusing on the
positioning of a parabola that interpolates the original function. The method identifies the conditions under
which two interpolating parabolas will be situated on opposite sides of the given function. Cortez et al.
(2023) , introduced two novel hybrid methods for solving nonlinear equations by leveraging classical
techniques like bisection, trisection, and modified false position. These hybrid methods, termed bisection-
modified false position and trisection-modified false position.

This research brings together three well- known methods: The Bisection method, the False Position
method, and Edmond Halley's Method, to create a new approach called the Hybrid Bisection False Position
Edmond method (or Hybrid method) . The goal is to develop an optimized method that combines the
strengths of each individual approach, leading to more precise and efficient solutions. By leveraging the
stability of the Bisection method, the adaptability of the False Position method, and the fast convergence of
Edmond Halley's Method, the method aims to achieve faster convergence while maintaining high accuracy.
The research emphasizes how each method’ s unique advantages enhance the overall effectiveness of this
hybrid approach, ultimately improving performance in solving nonlinear equations.

Research Objectives
1. To develop an efficient estimation method for finding the roots of nonlinear equations by refining

and integrating traditional techniques to enhance accuracy.
2. Evaluate and compare the effectiveness of traditional methods and hybrid methods to identify which

approach demonstrates superior performance.

3. Designing appropriate coding strategies to achieve effective results in solving complex problems.

วารสารวิทยาศาสตรและวิทยาศาสตรศึกษา ปท่ี 8 เลมท่ี 1 (ม.ค. – มิ.ย. 2568) | 155

ลิขสิทธ์ิโดย คณะวิทยาศาสตร มหาวิทยาลัยอุบลราชธานี

Review of Literature
In numerical analysis, finding the roots of nonlinear equations is a critical task with significant

applications in various fields. There are many methods in numerical method for finding roots, two widely
used methods for this purpose are the bisection method and the false position method. The bisection
method employs the intermediate value theorem to progressively narrow down an interval containing a root,
ensuring convergence but often at a slower rate. On the other hand, the false position method enhances
this process by applying linear interpolation, typically leading to faster convergence when the function
behaves consistently near the root. In the following sections, we will explore the algorithms, advantages, and
limitations of these methods, providing a clear understanding of their roles in solving nonlinear equations.

Traditional Root-Finding Algorithm methods

1. Bisection Method
The most basic method for finding roots of f(x) = 0 is Bisection method. The bisection method divides

the interval in half at each step. Before starting to approximate the root, it is necessary to check if there is a
root within the interval by examining the signs of the function at the endpoints. If the signs at the endpoints
are opposite, then a root exists within that interval. Following each halving of the interval, the newly
calculated 𝑥𝑥- value undergoes evaluation to verify whether the value represents the root or lies within an
acceptable error margin close to the root. If the criteria remain unmet, the method proceeds by identifying
the subinterval most likely to contain the root, based on examining the signs of the function at the endpoints
and at the newly calculated 𝑥𝑥-value. Any pair of points with opposite signs indicates the presence of a root
within that interval. The interval then undergoes further bisection to compute the next 𝑥𝑥- value, and the
iterative process continues until achieving a satisfactory solution. The formula for approximate value of the
root finding with Bisection method is 𝑥𝑥 = 𝑥𝑥𝐿𝐿+𝑥𝑥𝑅𝑅

2
, where 𝑥𝑥𝐿𝐿 is 𝑥𝑥-value on the left of the interval and 𝑥𝑥𝑅𝑅 is x-

value on the right of the interval.

Figure 1 Bisection method

Figure 1 illustrates the bisection of the interval, with the initial interval is [𝑎𝑎, 𝑏𝑏]. The first midpoint
obtained is 𝑥𝑥1, and the next interval to consider is [𝑎𝑎, 𝑥𝑥1]. This process continues, yielding 𝑥𝑥2 and so forth,
until a value close to or equal to the root 𝑥𝑥∗ is reached.

156 | Journal of Science and Science Education Vol. 8 No. 1 (Jan. – Jun. 2025)

Copyright by Faculty of Science, Ubon Ratchathani University

The Bisection method, while conceptually straightforward, exhibits notable drawbacks. This method
converges slowly, resulting in the potential loss of valuable intermediate approximations. However, the most
significant advantage remains the guarantee of convergence to a solution. As a result, this method is
frequently employed as a preliminary step before applying more efficient techniques, Burden and Faires
(2001); Kincaid and Cheney (1990).

2. False Position Method

The False position method or Regular falsi method is an approximation technique for finding roots
that begins with an initial interval, that requires examination to confirm the existence of a root. The two

endpoints are then used to find the intersection point on the x- axis, yielding the first approximation of the
root, denoted as 𝑥𝑥1. Subsequently, the interval containing the root is considered, similar to the Bisection
Method, by examining the signs of the function at the endpoints and at 𝑥𝑥1. If the signs are opposite, a root
exists within that interval. This process continues until a root or a value close to the root, within an acceptable
error margin, is found. The formula for approximate value of the root finding with False position method is

𝑥𝑥 = 𝑥𝑥𝐿𝐿𝑓𝑓(𝑥𝑥𝑅𝑅)−𝑥𝑥𝑅𝑅𝑓𝑓(𝑥𝑥𝐿𝐿)
𝑓𝑓(𝑥𝑥𝑅𝑅)−𝑓𝑓(𝑥𝑥𝐿𝐿)

, where 𝑥𝑥𝐿𝐿 is x- value on the left of the interval and 𝑥𝑥𝑅𝑅 is x- value on the right of the

interval.

Figure 2 False position method

From Figure 2, the exact root value is 𝑥𝑥∗. The line connecting the points (𝑥𝑥0, 𝑓𝑓(𝑥𝑥0)) and
(𝑥𝑥1, 𝑓𝑓(𝑥𝑥1)) intersects the x-axis at (𝑥𝑥2, 0). The line formed by (𝑥𝑥2, 𝑓𝑓(𝑥𝑥2)) and (𝑥𝑥1, 𝑓𝑓(𝑥𝑥1)) intersects the
𝑥𝑥- axis at (𝑥𝑥3, 0). This process continues until an approximate root value close to 𝑥𝑥∗ or the true root is
obtained.

3. Newton’s method

The Newton's method or Newton Richardson’s method uses the principle of the slope of the tangent
line to the graph to find an approximate root value. At the beginning of root- finding, it is not necessary to
specify an initial interval; only an initial approximation of the root is needed to estimate the next root value.

The formula for estimating the next root value is 𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 −
𝑓𝑓(𝑥𝑥𝑖𝑖)

𝑓𝑓′(𝑥𝑥𝑖𝑖+1)
 .

วารสารวิทยาศาสตรและวิทยาศาสตรศึกษา ปท่ี 8 เลมท่ี 1 (ม.ค. – มิ.ย. 2568) | 157

ลิขสิทธ์ิโดย คณะวิทยาศาสตร มหาวิทยาลัยอุบลราชธานี

Figure 3 Newton’s method

From Figure 3, the initial root approximation is 𝑥𝑥0. The 𝑙𝑙1 is the tangent line to the graph at the point

�𝑥𝑥0, 𝑓𝑓(𝑥𝑥0)� and intersects the 𝑥𝑥-axis at (𝑥𝑥10), where 𝑥𝑥1 is the approximate root value. From �𝑥𝑥1, 𝑓𝑓(𝑥𝑥1)�,
the line 𝑙𝑙2 forms the next tangent to the graph and intersects the 𝑥𝑥 -axis at (𝑥𝑥2, 0), where 𝑥𝑥2 is the new root

approximation. This process continues until the true root is obtained or an approximate root value within the

desired error tolerance is reached.

4. Edmond-Halley’s Method

Edmond- Halley’ s Method or Halley’ s Method is a root approximation technique that offers faster

convergence than the Newton's method. While the formula resembles that of Newton's, this utilizes both

the first and second derivatives for root estimation, Noor and Noor (2007) . The Edmond-Halley method,

named after the renowned English mathematician and astronomer who lived from 1656 to 1742, represents

an extension of Newton's method through the incorporation of Taylor series expansion up to the second

derivative. This method is particularly suitable for functions where the second derivative can be computed

efficiently. In cases where the computation of the second derivative is challenging, Newton's method serves

as a viable alternative, as it relies solely on the first derivative. This method requires only a single initial root

approximation and does not need an initial interval. This method is particularly suitable for functions where

calculating the first and second derivatives is straightforward.

To find 𝑓𝑓(𝑥𝑥) = 0, Taylor's expansion can be used for the function 𝑓𝑓(𝑥𝑥), resulting in

𝑓𝑓(𝑥𝑥𝑖𝑖) + (𝑥𝑥 − 𝑥𝑥𝑖𝑖)𝑓𝑓 ′(𝑥𝑥𝑖𝑖) + (𝑥𝑥−𝑥𝑥𝑖𝑖)2

2
𝑓𝑓 ′′(𝑥𝑥𝑖𝑖) = 0.

.

Therefore, 𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 −
2𝑓𝑓(𝑥𝑥𝑖𝑖)𝑓𝑓′(𝑥𝑥𝑖𝑖)

2�𝑓𝑓′(𝑥𝑥𝑖𝑖)�
2
−𝑓𝑓(𝑥𝑥𝑖𝑖)𝑓𝑓′′(𝑥𝑥𝑖𝑖)

 . This formula becomes representative of Newton’s

method when 𝑓𝑓 ′′(𝑥𝑥𝑖𝑖) = 0.

All four methods are effective in solving 𝑓𝑓(𝑥𝑥) = 0. A comparison of their strengths and weaknesses

is provided in the table 1.

158 | Journal of Science and Science Education Vol. 8 No. 1 (Jan. – Jun. 2025)

Copyright by Faculty of Science, Ubon Ratchathani University

Table 1 Comparison of root-finding method.

Method Derivatives Required Robustness Speed Applicability

Bisection None Highly
robust

Slow Suitable for any function that
guarantees a root within the
specified interval

False Position None Robust Moderate Appropriate for continuous
functions, particularly those that
are not excessively flat

Newton First derivative Sensitive to
initial guess

Fast Effective for functions with
derivatives and when a good
initial guess close to the root is
available

Edmond-Halley First and second
derivatives

Sensitive to
initial guess

Fast Ideal for applications demanding
highly accurate results and when
second derivatives are accessible

The Hybrid Edmond-Halley Method
 This section focuses on integrating and enhancing all three methods: bisection, false position and

Edmond-Halley method to develop a new, more effective approach. The combined strengths of the bisection

and false position methods will be utilized, as these methods rely on an initial interval where a root is assured

to exist, guaranteeing a successful outcome.

 Algorithm for Hybrid Edmond-Halley method (Hybrid method)

To solve 𝑓𝑓(𝑥𝑥) = 0, this approach combines three methods: the Bisection method, the False Position
method, and Edmond-Halley’s method to improve efficiency. The bisection method is a reliable root-finding
approach that ensures convergence when a sign change exists across the interval, though its convergence
rate tends to be slow. In contrast, the false position method often achieves faster convergence through a
secant-based approximation. While bisection is preferred for its reliability, false position is advantageous for
faster convergence under suitable conditions. A hybrid approach that combines the strengths of both
methods with an additional corrective technique, the Edmond- Halley method, can yield more efficient and
accurate root approximations.

 The process proceeds as follows:

1. Initialized Parameters:
1.1 Define function 𝑓𝑓(𝑥𝑥) and the first and second derivatives of 𝑓𝑓(𝑥𝑥).

1.2 Set the initial interval [𝑎𝑎, 𝑏𝑏].
1.3 Define the tolerance tol and the maximum number of iterations max_iter.

2. Check Initial Interval Validity: If 𝑓𝑓(𝑎𝑎) ∙ 𝑓𝑓(𝑏𝑏) < 0, there is a root in the interval. If not, exit the
algorithm.

3. Choose method: Use Bisection or False position only one iteration to find an approximated root 𝑥𝑥𝑖𝑖 .
3.1. If absolute error of f(x_Bisection) < absolute error of f(x_False Position), choose Bisection. Else

choose False position.

3.2 Check tolerance: if |𝑓𝑓(𝑥𝑥𝑖𝑖)| < 𝑡𝑡𝑡𝑡𝑡𝑡, return 𝑥𝑥𝑖𝑖 as the root.

วารสารวิทยาศาสตรและวิทยาศาสตรศึกษา ปท่ี 8 เลมท่ี 1 (ม.ค. – มิ.ย. 2568) | 159

ลิขสิทธ์ิโดย คณะวิทยาศาสตร มหาวิทยาลัยอุบลราชธานี

4. Improve root: Use Edmond-Halley’s method with initial guess 𝑥𝑥𝑖𝑖 from 3.1.

Iterate to find root: For each iteration up to max_iter:

If both 𝑓𝑓′(𝑥𝑥𝑖𝑖)and 𝑓𝑓′′(𝑥𝑥𝑖𝑖) exist: 𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 −
2𝑓𝑓(𝑥𝑥𝑖𝑖)𝑓𝑓′(𝑥𝑥𝑖𝑖)

2𝑓𝑓′(𝑥𝑥𝑖𝑖)2−𝑓𝑓(𝑥𝑥𝑖𝑖)𝑓𝑓′′(𝑥𝑥𝑖𝑖)
 . Evaluate 𝑓𝑓(𝑥𝑥𝑖𝑖+1).

If 𝑥𝑥𝑖𝑖+1 falls outside the interval [𝑎𝑎, 𝑏𝑏], reset the initial guess of Edmond- Halley’ s method

as the root from the previously selected root and repeat Edmond-Halley.

5. Check Convergence:
If |𝑓𝑓(𝑥𝑥𝑖𝑖+1)| < 𝑡𝑡𝑡𝑡𝑡𝑡, return 𝑥𝑥𝑖𝑖+1 as a root.

6. Iteration Loop: Increment number of iteration. If number of iteration > max_iter, terminate and report
no convergence.

7. Repeat Steps 3-6 until convergence is achieved

The hybrid method begins with the application of the bisection method and the false position

method to estimate the root in the interval. If the estimated root does not meet the condition |𝑓𝑓(𝑥𝑥𝑖𝑖)| <
𝑡𝑡𝑡𝑡𝑡𝑡, the root obtained from the method yielding the smaller absolute value of approximated root is selected

as the initial root for the Edmond-Halley method. The Edmond-Halley method is then employed to refine

the root approximation. The updated approximation is evaluated against the same convergence

criterion, |𝑓𝑓(𝑥𝑥𝑖𝑖)| < 𝑡𝑡𝑡𝑡𝑡𝑡. If this condition remains unmet, the process advances to the next iteration. If the

updated root fall outside the interval, the root from the previous method is reselected as the initial guess

for the Edmond-Halley method. This cycle continues until the condition |𝑓𝑓(𝑥𝑥𝑖𝑖)| < 𝑡𝑡𝑡𝑡𝑡𝑡 is satisfied, at which

point the root is obtained. Thus, each iteration consists of an initial estimation through the bisection and false

position methods, followed by refinement of the root approximation using the Edmond-Halley method. The

total number of iterations involves one iteration of the bisection method, one iteration of the false position

method, and additional iterations from the Edmond-Halley method, as required to achieve convergence.

Advantages of the Hybrid Method

1. The hybrid method incorporates bisection and false position techniques to effectively manage cases

where the initial guesses are far from the root, ensuring reliable starting approximations.

2. By utilizing the cubic convergence property of the Edmond-Halley method, the algorithm achieves rapid

refinement of the root approximation, significantly reducing the number of iterations required near the root.

3. The method enhances reliability by seamlessly reverting to the more robust approaches of bisection

or false position in situations where Newton’s method or Edmond-Halley method fail to converge, thereby

avoiding computational failure.

4. The hybrid approach dynamically selects the most appropriate method based on error minimization at

each iteration, ensuring accuracy and efficiency throughout the root-finding process

Performance Evaluation

In order to test the efficiency of the Hybrid Edmond-Halley method, a series of examples will be

employed with a tolerance of 10−10. We will compare its performance to established techniques,

including the bisection method, false position method, Newton's method, Edmond-Halley method, and

Hybrid Edmond-Halley method. This approximation aims to highlight the strengths and weaknesses of each

method in terms of accuracy and computational efficiency. There are 6 example tests.

160 | Journal of Science and Science Education Vol. 8 No. 1 (Jan. – Jun. 2025)

Copyright by Faculty of Science, Ubon Ratchathani University

1. 𝑓𝑓(𝑥𝑥) = 0.3𝑥𝑥2 − 4.5𝑥𝑥 − 15, with exact solution is 𝑥𝑥 =-2.807764064044151.
2. 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥 + 0.2𝑥𝑥2 − 10, with exact solution is 𝑥𝑥 =-7.070767433290999.
3. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 𝑥𝑥 − 48.75, with exact solution is 𝑥𝑥 =6.500000000000000.
4. 𝑓𝑓(𝑥𝑥) = sin(𝑥𝑥 − 1) + 𝑥𝑥2 − 9, with exact solution is 𝑥𝑥 =2.834533011882032.
5. 𝑓𝑓(𝑥𝑥) = 10𝑙𝑙𝑙𝑙(𝑥𝑥) + 2

𝑥𝑥
− 5, with exact solution is 𝑥𝑥 =1.434103727265730.

6. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 9.41361457𝑥𝑥2 + 15.23940620𝑥𝑥 − 15.50505725, with exact solution is
𝑥𝑥 =0.696039315664213.
The results of these example tests are in Table 2-7.

Table 2 Approximate root of 𝑓𝑓(𝑥𝑥) = 0.3𝑥𝑥2 − 4.5𝑥𝑥 − 15.

method
s

Initial
interval/

guess

Number of
iterations

Root Absolute error CPU time (seconds)

Bisection [-10,10] 32 -2.807764064054936 0.000000000066700 0.035902500152588

False
position

[-10,10] 21 -2.807764064028455 0.000000000097076 0.000996589660645

Newton -10 6 -2.807764064044152 0.000000000000000 0.000998258590698

Edmon
Halley

-10 4 -2.807764064044152 0.000000000000000 0.002987146377563

Hybrid [-10,10] 5 -2.807764064044151 0.000000000000000 0.001994609832764

Table 3 Approximate root of 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥 + 0.2𝑥𝑥2 − 10.

methods Initial
interval/guess

Number
of

iterations

Root Absolute error CPU time (seconds)

Bisection [-10,0] 34 -7.070767433324363 0.000000000094336 0.041887283325195

False
position

[-10,0] 16 -7.070767433281620 0.000000000026516 0.000996589660645

Newton -10 5 -7.070767433290999 0.000000000000000 0.000996351242065

Edmon-
Halley

-10 4 -7.070767433290999 0.000000000000000 0.003029823303223

Hybrid [-10,0] 5 -7.070767433291000 0.000000000000003 0.035856962203979

วารสารวิทยาศาสตรและวิทยาศาสตรศึกษา ปท่ี 8 เลมท่ี 1 (ม.ค. – มิ.ย. 2568) | 161

ลิขสิทธ์ิโดย คณะวิทยาศาสตร มหาวิทยาลัยอุบลราชธานี

Table 4 Approximate root of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 𝑥𝑥 − 48.75

methods Initial
interval/guess

Number
of

iterations

Root Absolute error CPU time
(seconds)

Bisection [-10,0] 38 6.500000000021828 0.000000000025466 0.031914949417114

False
position

[-10,0] 13 6.499999999995794 0.000000000058876 0.000954151153564

Newton -10 5 6.500000000000000 0.000000000000000 0.001015901565552

Edmon-
Halley

-10 4 6.500000000000000 0.000000000000000 0.003029823303223

Hybrid [-10,0] 6 6.500000000000000 0.000000000000000 0.003989458084106

Table 5 Approximate root of 𝑓𝑓(𝑥𝑥) = sin(𝑥𝑥 − 1) + 𝑥𝑥2 − 9

methods Initial
interval/guess

Number
of

iterations

Root Absolute error CPU time
(seconds)

Bisection [-2,4] 37 2.834533011860912 0.000000000003829 0.047030448913574

False
position

[-2,4] 14 2.834533011879617 0.000000000013061 0.000996589660645

Newton 4 5 2.834533011882032 0.000000000000000 0.001000165939331

Edmon-
Halley

4 4 2.834533011882032 0.000000000000000 0.002995967864990

Hybrid [-2,4] 5 2.834533011881290 0.000000000004036 0.075797080993652

162 | Journal of Science and Science Education Vol. 8 No. 1 (Jan. – Jun. 2025)

Copyright by Faculty of Science, Ubon Ratchathani University

Table 6 Approximate root of 𝑓𝑓(𝑥𝑥) = 10𝑙𝑙𝑙𝑙𝑙𝑙 + �2
𝑥𝑥
� − 5

methods Initial
interval/guess

Number
of

iterations

Root Absolute error CPU time
 (seconds)

Bisection [0.2,4] 34 1.434103727276670 0.000000000065662 0.057822227478027

False
position

[0.2,4] 24 1.434103727274182 0.000000000050734 0.000995874404907

Newton 0.2 Exceeded
maximum
iterations

Failed to identify the
root

- -

Edmon-
Halley

0.2 - Failed to identify the
root

- -

Hybrid [0.2,4] 5 1.434103727265730 0.000000000000000 0.067799091339111

Table 7 Approximate root of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 9.41361457𝑥𝑥2 + 15.23940620𝑥𝑥 − 15.50505725

methods Initial
interval/guess

Number
of

iterations

Root Absolute error CPU time
 (seconds)

Bisection [0,10] 33 0.696039315662347 0.000000000055609 0.042885065078735

False
position

[0,10] Exceeded
maximum
iterations

Failed to identify
the root

- -

Newton 10 8 0.696039315664213 0.000000000000000 0.001022577285767

Edmon-
Halley

10 6 0.696039315664213 0.000000000000000 0.024210691452026

Hybrid [0.2,4] 5 0.696039315664213 0.000000000000000 0.002997159957886

วารสารวิทยาศาสตรและวิทยาศาสตรศึกษา ปท่ี 8 เลมท่ี 1 (ม.ค. – มิ.ย. 2568) | 163

ลิขสิทธ์ิโดย คณะวิทยาศาสตร มหาวิทยาลัยอุบลราชธานี

Performance testing of the Hybrid Edmond-Halley method (hybrid method) across various types of

functions reveals mixed results regarding time consumption. In some cases, it requires less time to find the

root, while in others, it takes more time, with moderate results in certain examples. However, a clear

advantage, as shown in Tables 2–7, is the hybrid method's consistent success in approximating the root across

all test cases, unlike other methods that occasionally fail. For example, the Edmond-Halley method fails in

Table 6, whereas the hybrid method successfully finds the root. Furthermore, in Table 6, the Newton method

exceeds the iteration limit, and in Table 7, the false position method also surpasses the iteration limit of

1,000 iterations. Additionally, the hybrid method employs a number of iterations comparable to Newton’s

method and Edmond-Halley’s method but fewer than the bisection and false position methods. Overall, the

hybrid method demonstrates exceptional efficiency and the ability to handle all problem scenarios

effectively.

Strategy Design Pattern

The Strategy Design Pattern addresses the growing complexity of mathematical problems in fields

like computational mathematics, data science, and engineering by offering a flexible framework for algorithm

management. This approach allows for seamless integration and interchange of diverse mathematical

methods without altering the core codebase, significantly improving software maintainability, scalability, and

efficiency. By enabling dynamic selection of appropriate algorithms based on specific contexts or constraints,

it overcomes the limitations of traditional, rigid software solutions. This bridging of software design principles

with mathematical problem- solving not only enhances system flexibility but also fosters innovation in

computational mathematics, providing a versatile framework for managing algorithms across a wide range of

applications and facilitating rapid advancements in the field.

Experts can provide class diagrams as recommended practices in addition to the fundamental ones

made by software engineers. The most popular best practices are the Gang of Four (GoF) design patterns,

which were first presented by Gamma et al. (1994). The programs written using most of the design patterns

were simpler compared to the programs written without using design patterns, Qamar and Malik (2020) .

A family of algorithms is defined by the Strategy Design Pattern, Sarcar (2022), which encapsulates and renders

replaceable each algorithm. It permits variations in the algorithm that are not dependent on the clients using

it. Also, the clients ought not to be aware of the data. Avoiding exposing intricate, algorithm- specific data

structures is encouraged by the Strategy pattern. It describes, enumerates, and makes a family of algorithms

interchangeable. Khairin, Kusumo and Priyadi (2022) , analyzed the impact of design patterns on mobile

application performance. They found that design patterns can affect application performance depending on

the design pattern used. The Strategy pattern and Visitor pattern optimize memory usage by 1%. Ngaogate

et al. (2024) , suggested the Strategy pattern for implementation of two machine learning techniques, Back

propagation and Hybrid with Fixed point.

This study employs five distinct algorithms to determine root values for various functions.

Implementing these algorithms in Python is essential to enable the mathematician to more easily assess their

efficiency. To support this, we present the following class structure and strategy design for code

implementation in the research on comparing machine learning algorithms, as shown in Figure 4.

164 | Journal of Science and Science Education Vol. 8 No. 1 (Jan. – Jun. 2025)

Copyright by Faculty of Science, Ubon Ratchathani University

Figure 4 classes’ structure based on the strategy design pattern

The Strategy pattern enhances flexibility and algorithm switching between methods dynamically without

changing the structure of the underlying code. The main program simply calls each method by using the

same instruction as below.

1. # get function from user
2. func = input("function: ")
3.
4. x = symbols('x')
5.
6. # call Bisection method
7. root = Root(Bisection_Strategy(x))
8. root.find(func)
9.
10. # call Hybrid Edmon method
11. root = Root(Hybrid_Edmon_Strategy(x))
12. root.find(func)
The codes at lines 7 and 11 above demonstrate how simple it was to switch between the Bisection

approach and the Hybrid Edmond-Halley’s method. Additionally, the Edmond- Halley, Newton Raphson, and

False position were the three additional research methodologies that were simply called.

วารสารวิทยาศาสตรและวิทยาศาสตรศึกษา ปท่ี 8 เลมท่ี 1 (ม.ค. – มิ.ย. 2568) | 165

ลิขสิทธ์ิโดย คณะวิทยาศาสตร มหาวิทยาลัยอุบลราชธานี

The Root class contains “strategy” as an attribute in order to support polymorphism of strategies defined

by the Find_Root_Strategy class.

class Find_Root_Strategy (ABC):

 # attribute

 x = symbols('x')

 @abstractmethod

 def find(self, func):

 pass

 @abstractmethod

 def get_input(self):

 pass

Furthermore, the Strategy Pattern improves the mathematical software's maintainability and

extensibility because it allows us to easily add a new class that implements the necessary method while

maintaining the same interface and integrate it into the current system without changing other code. For

instance, all we would have to do is develop a new class that implements the Find_Root_Strategy interface

if a new algorithm called the Fixedpoint method were created.

The FixedPointStrategy : another mathematical method for finding Root

class FixedPointStrategy(Find_Root_Strategy):

 def find(self, func):

 its algorithms

The Strategy design pattern brings several benefits to mathematical applications by decoupling

algorithm selection from core logic. This approach reduces code duplication, improves modularity, and

streamlines testing. By encapsulating each algorithm in its own class, the codebase becomes more modular

and easier to understand. Modularity is essential for testing and validation, allowing for the independent

testing of individual algorithms. This separation simplifies debugging and ensures errors are traceable to

specific algorithms rather than being intertwined within the larger system. For instance, to verify the

functionality of the Hybrid Edmond method, the Hybrid_Edmon_Strategy class can be unit tested

independently, without concern for the rest of the system.

Conclusion

The hybrid method integrates the bisection method, false position method, and Edmond-Halley

method, utilizing the strengths of each to efficiently approximate roots. In all seven test cases, the method

requiring the fewest iterations was the Hybrid Edmond- Halley method, followed by Newton’ s method, the

false Position method, and the bisection method, respectively, under the same tolerance of 10−10. In some

cases, the Edmond-Halley method and Newton's method fail to find roots due to the selection of an initial

guess. A poorly selected initial guess can obstruct the convergence of these methods to a root. The Hybrid

Edmond-Halley method addresses this limitation by incorporating adjustments that ensure the selection of

166 | Journal of Science and Science Education Vol. 8 No. 1 (Jan. – Jun. 2025)

Copyright by Faculty of Science, Ubon Ratchathani University

a suitable initial guess, enabling successful root-finding. Additionally, methods such as bisection and false

position often require an excessive number of iterations in some cases. The Hybrid Edmond-Halley method,

however, achieves convergence with a significantly reduced number of iterations when compared to these

methods.

The Hybrid Edmond-Halley method provides an exceptionally efficient solution for root-finding,

requiring very few iterations. Employing a hybrid framework effectively addresses the convergence limitations

of both Newton's method and the Edmond-Halley method. Additionally, the computational time remains

practical, underscoring reliability and suitability for practical implementations.

For coding, the Strategy design pattern is a valuable tool for building adaptable mathematical

software systems. By decoupling algorithms from their clients, it allows for seamless switching between

different solving methods without requiring extensive modifications. This flexibility is crucial in fields like

computational fluid dynamics, data approximation, and machine learning, where problem characteristics or

performance requirements may necessitate different approaches. The Strategy design pattern also enhances

maintainability by reducing code duplication and promoting modularity, making it easier to integrate new

algorithms and maintain existing ones.

Future work may involve developing a hybrid approach for root approximation, combining various

methods to overcome the shortcomings of traditional techniques.

References
Bogdanov, V. V. and Volkov, Y. S. (2013). A modified quadratic interpolation method for root finding. Journal

of Applied and Industrial Mathematics, 17(3), 491-497.

Burden, R. L. and Faires, J. D. (2001). Numerical Analysis. USA: Brooks/Cole.

Cortez, M. V., Ali, N. Z., Khan, A. G. and Awan M. U. (2023). Numerical analysis of new hybrid algorithms for

solving nonlinear equations. Axioms, 12(7), 684.

Gemechu, T. and Thota, S. (2020). On new root finding algorithms for solving nonlinear transcendental

equations. International Journal of Chemistry Mathematics and Physics, 4(2), 18-24.

Gamma, E. , Helm, R. , Johnson, R. and Vlissides J. (1994) . Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley. Indianapolis: Addison-Wesley.

Jun, Y. and Jeon, J. (2019). Modified bisection method for solving nonlinear equations. International Journal

of Scientific and Innovation Mathematical Research, 7(9), 8-11.

Khairin, A. , Kusumo, D. and Priyadi, Y. (2022) . Analysis of The Impact of Software Detailed Design on Mobile

Application Performance Metrics. Building of Informatics. Technology and Science (BITS), 4(1), 226−234.

Kincaid, D. and Cheney, W. (1990) . Numerical analysis mathematics of scientific computing. USA:

Brook/Cole.

Ngaogate, W. , Jean, A. , Wattanataweekul, R. , Janngam, K. and Alherbe, T. (2024) . Hybrid Machine Learning

Algorithm with Fixed Point Technique for Medical Data Classification Problems Incorporating Data

Cryptography. Thai Journal of Mathematics, 22(2), 295–310.

Noor, K. I. and Noor, M. A. (2007) . Predictor- Corrector Halley method for nonlinear equations. Applied

Mathematics and Computation, 188, 1587-1591.

Qamar, N and Malik, A. A. (2020) . Impact of Design Patterns on Software Complexity and Size. Mehran

University Research Journal of Engineering and Technology, 39(2), 342-352.

วารสารวิทยาศาสตรและวิทยาศาสตรศึกษา ปท่ี 8 เลมท่ี 1 (ม.ค. – มิ.ย. 2568) | 167

ลิขสิทธ์ิโดย คณะวิทยาศาสตร มหาวิทยาลัยอุบลราชธานี

Sabharwai, C. L. (2019) . Blended root finding algorithm outperforms bisection and regula falsi algorithm.

Mathematics, 7(11), 1-16.

Sarcar, V. (2022). Java Design Patterns: A Hands-On Experience with Real-World Examples (Third Edition).

USA: Apress.

Tanakan, S. (2013) . A new algorithm of modified bisection method for nonlinear equation. Applied

Mathematical Sciences, 7(123), 16107-16114.

