;1, JSSE JOURNAL OF SCIENCE & SCIENCE EDUCATION Vol. 8 No. 1 (Jan. —Jun. 2025): 152-167
PN
“" Faculty of Science, Ubon Ratchathani University http://doi.org/10.14456/jsse.2025.13

Research Article in Science

Empirical Comparison of Root-Finding Algorithms between Classical Methods
and Hybrid Method

Jiratchaya Jaisaardsuetrong' and Wasana Ngaogate®”
Department of Mathematics, Statistics and Computer, Faculty of Science, Ubon Ratchathani University

*Email: wasana.n@ubu.ac.th

Received <6 November 2024>; Revised <17 February 2025>; Accepted <18 February 2025 >

Abstract

This research presents a novel method derived from combination of traditional techniques, namely
the Bisection method, False position method and Edmond-Halley’ s method, to enhance the efficiency of
root finding algorithms. The research also compares the performance of this traditional methods with the
new hybrid method by coding in Python. The results show that the new method demonstrates superior
efficiency than the classical methods. Furthermore, a classe’s structure based on the strategy design pattern
was developed for code implementation, facilitating systematic coding and improving maintainability and

scalability of the algorithms.

Keywords: Bisection method; False position method; Edmond-Halley’s method; Hybrid method,;
Strategy design pattern

Copyright by Faculty of Science, Ubon Ratchathani University

mailto:wasana.n@ubu.ac.th

IATIMEImaN AL I mIansany) U9 8 audl 1 (1., - d.6. 2568) | 153

UNANLITEMPINFENS

¥
Y4

ASUSEUTIBULTIU T2 AN YU I9aND I s UNITUITINTLNINI S ALANLAZ IS NE

35ve1 Tedreanadense’ waza1au widunw®
'medmedemans adi uasnouluges AalyInNeIMans unI1IeI1a8gUaTIve Il

*Email: wasana.n@ubu.ac.th

[]

Unanes

12
awv Ao

mATeiltaueisnslmliiaundunnnswausaumeaiadaiu [dud Foutsedenng Tuffumiein uas
Fveudaueud-Faiad ileifiuuszaviamuessaneifilunismaiin medfedudieuiisuussaninmueitng
wussRumaiiuIalmlnsnadeuldaluntvlnseu nansideuandiiuiiiinisludivss dnsamgandy
Brrsuvudaiu uenaind deldiannlassadesnaaiidstunsesnuuukuugunagns tionisildnluldfiess
Juszuu iletefivenuannsalunsdigednvuas msvenefvesdaneisy

o o w

Adfdny: FFuUIRTIN; FBuAFuniin; Bvedaueud-saiad; IineEy; wuugunagns

Fvanslae Aol Inenmans 1/74731//5/7@”5/@1/5‘57%5717

mailto:wasana.n@ubu.ac.th

154 | Journal of Science and Science Education Vol. 8 No. 1 (Jan. — Jun. 2025)

Introduction

In solving the equation f(x) = 0, sometimes it is not possible to find the solution directly, as the
equation might be difficult to solve. However, there are numerical methods that can approximate the root.
The simplest method is the bisection method, which involves dividing the interval in half. Another widely
used method is Newton's method, which uses the slope of the graph and an initial reference point to
approximate the root. Another method is the false position method. There are several research articles that
study the approximation of roots. Gemechu and Thota (2020), proposed new iterative algorithms aimed at
determining the roots of nonlinear transcendental equations. These algorithms utilize nonlinear Taylor
polynomial interpolation combined with a modified error correction term grounded in fixed-point principles.
Furthermore, the study examines the potential to extend these higher-order iterative methods from single-
variable cases to higher dimensions. Jun and Jeon (2019), extended the bisection method to solve nonlinear
equations. The paper discusses convergence properties and iteration counts, and includes visual graphs.
Sabharwai (2019), proposed a dynamic blend of the bisection method and the regula falsi (false position)
method to enhance the performance of root-finding algorithms. The blended algorithm demonstrated
superior performance, requiring fewer computational steps to converge and offering a robust solution for
root-finding problems where classical methods may struggle. Tanakan (2013), presented a computational
algorithm that enhances the traditional bisection method for solving nonlinear equations, with the goal of
increasing both efficiency and accuracy in root approximation. Burden and Faires (2021), introduced hybrid
algorithm that combines the strengths of the trisection method and the false position method. The results
show that the proposed algorithm surpasses the secant, trisection, Newton-Raphson, bisection, and regula
falsi methods, in terms of both iterations count and average runtime. Bogdanov and Volkov (2013), modified
quadratic interpolation method for finding the roots of a continuous function is proposed, focusing on the
positioning of a parabola that interpolates the original function. The method identifies the conditions under
which two interpolating parabolas will be situated on opposite sides of the given function. Cortez et al.
(2023), introduced two novel hybrid methods for solving nonlinear equations by leveraging classical
techniques like bisection, trisection, and modified false position. These hybrid methods, termed bisection-
modified false position and trisection-modified false position.

This research brings together three well-known methods: The Bisection method, the False Position
method, and Edmond Halley's Method, to create a new approach called the Hybrid Bisection False Position
Edmond method (or Hybrid method). The goal is to develop an optimized method that combines the
strengths of each individual approach, leading to more precise and efficient solutions. By leveraging the
stability of the Bisection method, the adaptability of the False Position method, and the fast convergence of
Edmond Halley's Method, the method aims to achieve faster convergence while maintaining high accuracy.
The research emphasizes how each method’ s unique advantages enhance the overall effectiveness of this

hybrid approach, ultimately improving performance in solving nonlinear equations.

Research Objectives
1. To develop an efficient estimation method for finding the roots of nonlinear equations by refining
and integrating traditional techniques to enhance accuracy.
2. Evaluate and compare the effectiveness of traditional methods and hybrid methods to identify which

approach demonstrates superior performance.

3. Designing appropriate coding strategies to achieve effective results in solving complex problems.

Copyright by Faculty of Science, Ubon Ratchathani University

15ATIMEIMaNTUaL I mIansany) U9 8 audl 1 (1., - 4.6, 2568) | 155

Review of Literature

In numerical analysis, finding the roots of nonlinear equations is a critical task with significant
applications in various fields. There are many methods in numerical method for finding roots, two widely
used methods for this purpose are the bisection method and the false position method. The bisection
method employs the intermediate value theorem to progressively narrow down an interval containing a root,
ensuring convergence but often at a slower rate. On the other hand, the false position method enhances
this process by applying linear interpolation, typically leading to faster convergence when the function
behaves consistently near the root. In the following sections, we will explore the algorithms, advantages, and

limitations of these methods, providing a clear understanding of their roles in solving nonlinear equations.

Traditional Root-Finding Algorithm methods

1. Bisection Method

The most basic method for finding roots of f(x) = 0 is Bisection method. The bisection method divides
the interval in half at each step. Before starting to approximate the root, it is necessary to check if there is a
root within the interval by examining the signs of the function at the endpoints. If the signs at the endpoints
are opposite, then a root exists within that interval. Following each halving of the interval, the newly
calculated x-value undergoes evaluation to verify whether the value represents the root or lies within an
acceptable error margin close to the root. If the criteria remain unmet, the method proceeds by identifying
the subinterval most likely to contain the root, based on examining the signs of the function at the endpoints
and at the newly calculated x-value. Any pair of points with opposite signs indicates the presence of a root
within that interval. The interval then undergoes further bisection to compute the next x-value, and the

iterative process continues until achieving a satisfactory solution. The formula for approximate value of the
XL+XR

root finding with Bisection method is x = , where x, is x-value on the left of the interval and xp is x-

value on the right of the interval.

y &

Figure 1 Bisection method

Figure 1 illustrates the bisection of the interval, with the initial interval is [a, b]. The first midpoint
obtained is x4, and the next interval to consider is [a, x;]. This process continues, yielding x, and so forth,

until a value close to or equal to the root x* is reached.

Fvanslae Aol Inenmans 1/74731//5/7@”5/@1/5‘57%5717

156 | Journal of Science and Science Education Vol. 8 No. 1 (Jan. — Jun. 2025)

The Bisection method, while conceptually straightforward, exhibits notable drawbacks. This method
converges slowly, resulting in the potential loss of valuable intermediate approximations. However, the most
significant advantage remains the guarantee of convergence to a solution. As a result, this method is
frequently employed as a preliminary step before applying more efficient techniques, Burden and Faires
(2001); Kincaid and Cheney (1990).

2. False Position Method

The False position method or Regular falsi method is an approximation technique for finding roots
that begins with an initial interval, that requires examination to confirm the existence of a root. The two

endpoints are then used to find the intersection point on the x-axis, yielding the first approximation of the

root, denoted as x;. Subsequently, the interval containing the root is considered, similar to the Bisection

Method, by examining the signs of the function at the endpoints and at x;. If the signs are opposite, a root

exists within that interval. This process continues until a root or a value close to the root, within an acceptable

error margin, is found. The formula for approximate value of the root finding with False position method is
_ xLf(xp)—xRrf(xL)

x = e —ron where x; is x-value on the left of the interval and xp is x-value on the right of the

interval.

A\

Figure 2 False position method

From Figure 2, the exact root value is x*. The line connecting the points (X, f(xg)) and
(x1, f (x1)) intersects the x-axis at (x5, 0). The line formed by (x5, f(x3)) and (x4, f(x1)) intersects the
x-axis at (x3,0). This process continues until an approximate root value close to x* or the true root is
obtained.

3. Newton’s method

The Newton's method or Newton Richardson’s method uses the principle of the slope of the tangent
line to the graph to find an approximate root value. At the beginning of root-finding, it is not necessary to
specify an initial interval; only an initial approximation of the root is needed to estimate the next root value.

f(x)

The formula for estimating the next root value is X414 = x; — P
i+1

Copyright by Faculty of Science, Ubon Ratchathani University

IATIMEImanTUaL I mIansany U9 8 audl 1 (1., - d.6. 2568) | 157

y

e

/

y =_f (x)

(X1, F(x1)) x‘
14

/1,

(%:f(xo))

Figure 3 Newton’s method

From Figure 3, the initial root approximation is xq. The 14 is the tangent line to the graph at the point
(xo,f(xo)) and intersects the x-axis at (x;0), where x; is the approximate root value. From (xl,f(xl)),
the line I, forms the next tangent to the graph and intersects the x -axis at (x5, 0), where x5 is the new root
approximation. This process continues until the true root is obtained or an approximate root value within the

desired error tolerance is reached.

4. Edmond-Halley’s Method

Edmond-Halley’ s Method or Halley’ s Method is a root approximation technique that offers faster
convergence than the Newton's method. While the formula resembles that of Newton's, this utilizes both
the first and second derivatives for root estimation, Noor and Noor (2007). The Edmond-Halley method,
named after the renowned English mathematician and astronomer who lived from 1656 to 1742, represents
an extension of Newton's method through the incorporation of Taylor series expansion up to the second
derivative. This method is particularly suitable for functions where the second derivative can be computed
efficiently. In cases where the computation of the second derivative is challenging, Newton's method serves
as a viable alternative, as it relies solely on the first derivative. This method requires only a single initial root
approximation and does not need an initial interval. This method is particularly suitable for functions where

calculating the first and second derivatives is straightforward.

To find f(x) = 0, Taylor's expansion can be used for the function f(x), resulting in

(x=x;)*

fo) + (= x)f (x) + > f'(xp) =0.

2f (x)f (x;
Therefore, x;,1 = X;) (=)

L2 () - FGF ()

. This formula becomes representative of Newton’s
method when " (x;) = 0.

All four methods are effective in solving f(x) = 0. A comparison of their strengths and weaknesses

is provided in the table 1.

avanslee Aoz Inemans umInerageuasvodil

158 | Journal of Science and Science Education Vol. 8 No. 1 (Jan. — Jun. 2025)

Table 1 Comparison of root-finding method.

Method Derivatives Required | Robustness Speed Applicability
Bisection None Highly Slow Suitable for any function that
robust guarantees a root within the

specified interval

False Position None Robust Moderate | Appropriate for continuous
functions, particularly those that

are not excessively flat

Newton First derivative Sensitive to | Fast Effective for functions with
initial guess derivatives and when a good

initial guess close to the root is

available
Edmond-Halley | First and second Sensitive to | Fast Ideal for applications demanding
derivatives initial guess highly accurate results and when

second derivatives are accessible

The Hybrid Edmond-Halley Method

This section focuses on integrating and enhancing all three methods: bisection, false position and
Edmond-Halley method to develop a new, more effective approach. The combined strengths of the bisection
and false position methods will be utilized, as these methods rely on an initial interval where a root is assured
to exist, guaranteeing a successful outcome.

Algorithm for Hybrid Edmond-Halley method (Hybrid method)

To solve f(x) = 0, this approach combines three methods: the Bisection method, the False Position
method, and Edmond-Halley’s method to improve efficiency. The bisection method is a reliable root-finding
approach that ensures convergence when a sign change exists across the interval, though its convergence
rate tends to be slow. In contrast, the false position method often achieves faster convergence through a
secant-based approximation. While bisection is preferred for its reliability, false position is advantageous for
faster convergence under suitable conditions. A hybrid approach that combines the strengths of both
methods with an additional corrective technique, the Edmond- Halley method, can yield more efficient and

accurate root approximations.

The process proceeds as follows:

1. Initialized Parameters:
1.1 Define function f(x) and the first and second derivatives of f(x).
1.2 Set the initial interval [a, b].
1.3 Define the tolerance tol and the maximum number of iterations max iter.

2. Check Initial Interval Validity: If f(a) - f(b) < 0, there is a root in the interval. If not, exit the
algorithm.

3. Choose method: Use Bisection or False position only one iteration to find an approximated root Xj.
3.1. If absolute error of f(x_Bisection) < absolute error of f(x_False Position), choose Bisection. Else
choose False position.

3.2 Check tolerance: if |f(x;)| < tol, return x; as the root.

Copyright by Faculty of Science, Ubon Ratchathani University

IAITIMEIMaNTUaL I mIansany) U 8 ol 1 (1., - 4.6, 2568) | 159

4. Improve root: Use Edmond-Halley’s method with initial guess x; from 3.1.
lterate to find root: For each iteration up to max iter:

If both f'(x;)and f"'(x;) exist: ;41 = X; 2f () f" (xi)

2 2 F OO ()
If x; .1 falls outside the interval [a, b], reset the initial guess of Edmond-Halley’ s method

Evaluate f(xj41)-

as the root from the previously selected root and repeat Edmond-Halley.
5. Check Convergence:
If |f(x;41)] < tol, return x;44 as a root.
6. lIteration Loop: Increment number of iteration. If number of iteration > max _iter, terminate and report
no convergence.

7. Repeat Steps 3-6 until convergence is achieved

The hybrid method begins with the application of the bisection method and the false position
method to estimate the root in the interval. If the estimated root does not meet the condition |f(x;)| <
tol, the root obtained from the method yielding the smaller absolute value of approximated root is selected
as the initial root for the Edmond-Halley method. The Edmond-Halley method is then employed to refine
the root approximation. The updated approximation is evaluated against the same convergence
criterion, |f(xl)| < tol. If this condition remains unmet, the process advances to the next iteration. If the
updated root fall outside the interval, the root from the previous method is reselected as the initial guess
for the Edmond-Halley method. This cycle continues until the condition |f(x;)| < tol is satisfied, at which
point the root is obtained. Thus, each iteration consists of an initial estimation through the bisection and false
position methods, followed by refinement of the root approximation using the Edmond-Halley method. The
total number of iterations involves one iteration of the bisection method, one iteration of the false position

method, and additional iterations from the Edmond-Halley method, as required to achieve convergence.

Advantages of the Hybrid Method

1. The hybrid method incorporates bisection and false position techniques to effectively manage cases
where the initial guesses are far from the root, ensuring reliable starting approximations.

2. By utilizing the cubic convergence property of the Edmond-Halley method, the algorithm achieves rapid
refinement of the root approximation, significantly reducing the number of iterations required near the root.

3. The method enhances reliability by seamlessly reverting to the more robust approaches of bisection
or false position in situations where Newton’s method or Edmond-Halley method fail to converge, thereby
avoiding computational failure.

4. The hybrid approach dynamically selects the most appropriate method based on error minimization at

each iteration, ensuring accuracy and efficiency throughout the root-finding process

Performance Evaluation

In order to test the efficiency of the Hybrid Edmond-Halley method, a series of examples will be
employed with a tolerance of 10719, We will compare its performance to established techniques,
including the bisection method, false position method, Newton's method, Edmond-Halley method, and
Hybrid Edmond-Halley method. This approximation aims to highlight the strengths and weaknesses of each

method in terms of accuracy and computational efficiency. There are 6 example tests.

Fvanslae Aol Inenmans 1/74731//5/7@”5/@1/5‘57%5717

160 | Journal of Science and Science Education Vol. 8 No. 1 (Jan. — Jun. 2025)

1
2
3
4.
5
6

Table 2 Approximate root of f(x) = 0.3x% — 4.5x — 15.

f(x) = 0.3x2 — 4.5x — 15, with exact solution is x =-2.807764064044151.
f(x) = e* + 0.2x2 — 10, with exact solution is x =-7.070767433290999.

f(x) = x? + x — 48.75, with exact solution is x =6.500000000000000.

f(x) = sin(x — 1) + x% — 9, with exact solution is x =2.834533011882032.

f(x) =10In(x) +)2—6 — 5, with exact solution is x =1.434103727265730.

f(x) = x3 +9.41361457x? + 15.23940620x — 15.50505725, with exact solution is

x =0.696039315664213.

The results of these example tests are in Table 2-7.

method | Initial | Number of Root Absolute error CPU time (seconds)

S interval/| iterations

guess

Bisection | [-10,10] 32 -2.807764064054936 0.000000000066700 0.035902500152588
False [-10,10] 21 -2.807764064028455 0.000000000097076 0.000996589660645
position
Newton -10 6 -2.807764064044152 0.000000000000000 0.000998258590698
Edmon -10 4 -2.807764064044152 0.000000000000000 0.002987146377563
Halley
Hybrid [-10,10] 5 -2.807764064044151 0.000000000000000 0.001994609832764

Table 3 Approximate root of f(x) = e* + 0.2x? — 10.

methods Initial Number Root Absolute error CPU time (seconds)

interval/guess of

iterations

Bisection [-10,0] 34 -7.070767433324363 | 0.000000000094336 0.041887283325195
False [-10,0] 16 -7.070767433281620 | 0.000000000026516 0.000996589660645
position
Newton -10 5 -7.070767433290999 | 0.000000000000000 0.000996351242065
Edmon- -10 4 -7.070767433290999 | 0.000000000000000 0.003029823303223
Halley
Hybrid [-10,0] 5 -7.070767433291000 | 0.000000000000003 0.035856962203979

Copyright by Faculty of Science, Ubon Ratchathani University

AT INMaNTUaE e ImIan SNy U9 8 taudl 1 (u.A. - d.8. 2568) | 161

Table 4 Approximate root of f(x) = x2 + x — 48.75

methods Initial Number Root Absolute error CPU time

interval/guess of (seconds)
iterations

Bisection [-10,0] 38 6.500000000021828 | 0.000000000025466 0.031914949417114

False [-10,0] 13 6.499999999995794 | 0.000000000058876 0.000954151153564

position

Newton -10 5 6.500000000000000 | 0.000000000000000 0.001015901565552

Edmon- -10 a4 6.500000000000000 | 0.000000000000000 0.003029823303223

Halley

Hybrid [-10,0] 6 6.500000000000000 | 0.000000000000000 0.003989458084106

Table 5 Approximate root of f(x) = sin(x —1) + x2 -9

methods Initial Number Root Absolute error CPU time

interval/guess of (seconds)
iterations

Bisection [-2,4] 37 2.834533011860912 0.000000000003829 0.047030448913574

False [-2,4] 14 2.834533011879617 0.000000000013061 0.000996589660645

position

Newton 4 5 2.834533011882032 0.000000000000000 0.001000165939331

Edmon- 4 4 2.834533011882032 0.000000000000000 0.002995967864990

Halley

Hybrid [-2,4] 5 2.834533011881290 0.000000000004036 0.075797080993652

Fvanslae Aol Inenmans 1/74731//5/7@”5/@1/5‘57%5717

162 | Journal of Science and Science Education Vol. 8 No. 1 (Jan. — Jun. 2025)

Table 6 Approximate root of f(x) = 10Inx + (E) -5

methods Initial Number Root Absolute error CPU time
interval/guess of (seconds)

iterations

Bisection [0.2,4] 34 1.434103727276670 0.000000000065662 | 0.057822227478027

False [0.2,4] 24 1.434103727274182 0.000000000050734 | 0.000995874404907

position

Newton 0.2 Exceeded | Failed to identify the - -
maximum | root
iterations

Edmon- 0.2 - Failed to identify the - -

Halley root

Hybrid [0.2,4] 5 1.434103727265730 0.000000000000000 | 0.067799091339111

Table 7 Approximate root of f(x) = x3 + 9.41361457x% + 15.23940620x — 15.50505725

methods Initial Number Root Absolute error CPU time
interval/guess of (seconds)
iterations
Bisection [0,10] 33 0.696039315662347 | 0.000000000055609 0.042885065078735
False [0,10] Exceeded | Failed to identify - -
position maximum | the root
iterations
Newton 10 8 0.696039315664213 | 0.000000000000000 0.001022577285767
Edmon- 10 6 0.696039315664213 | 0.000000000000000 0.024210691452026
Halley
Hybrid [0.2,4] 5 0.696039315664213 | 0.000000000000000 0.002997159957886

Copyright by Faculty of Science, Ubon Ratchathani University

5AITIMEMaN AL N mIansAny) U 8 ol 1 (1., - d.6. 2568) | 163

Performance testing of the Hybrid Edmond-Halley method (hybrid method) across various types of
functions reveals mixed results regarding time consumption. In some cases, it requires less time to find the
root, while in others, it takes more time, with moderate results in certain examples. However, a clear
advantage, as shown in Tables 2-7, is the hybrid method's consistent success in approximating the root across
all test cases, unlike other methods that occasionally fail. For example, the Edmond-Halley method fails in
Table 6, whereas the hybrid method successfully finds the root. Furthermore, in Table 6, the Newton method
exceeds the iteration limit, and in Table 7, the false position method also surpasses the iteration limit of
1,000 iterations. Additionally, the hybrid method employs a number of iterations comparable to Newton’s
method and Edmond-Halley’s method but fewer than the bisection and false position methods. Overall, the
hybrid method demonstrates exceptional efficiency and the ability to handle all problem scenarios

effectively.

Strategy Design Pattern

The Strategy Design Pattern addresses the growing complexity of mathematical problems in fields
like computational mathematics, data science, and engineering by offering a flexible framework for algorithm
management. This approach allows for seamless integration and interchange of diverse mathematical
methods without altering the core codebase, significantly improving software maintainability, scalability, and
efficiency. By enabling dynamic selection of appropriate algorithms based on specific contexts or constraints,
it overcomes the limitations of traditional, rigid software solutions. This bridging of software design principles
with mathematical problem-solving not only enhances system flexibility but also fosters innovation in
computational mathematics, providing a versatile framework for managing algorithms across a wide range of
applications and facilitating rapid advancements in the field.

Experts can provide class diagrams as recommended practices in addition to the fundamental ones
made by software engineers. The most popular best practices are the Gang of Four (GoF) design patterns,
which were first presented by Gamma et al. (1994). The programs written using most of the design patterns
were simpler compared to the programs written without using design patterns, Qamar and Malik (2020).
A family of algorithms is defined by the Strategy Design Pattern, Sarcar (2022), which encapsulates and renders
replaceable each algorithm. It permits variations in the algorithm that are not dependent on the clients using
it. Also, the clients ought not to be aware of the data. Avoiding exposing intricate, algorithm- specific data
structures is encouraged by the Strategy pattern. It describes, enumerates, and makes a family of algorithms
interchangeable. Khairin, Kusumo and Priyadi (2022), analyzed the impact of design patterns on mobile
application performance. They found that design patterns can affect application performance depending on
the design pattern used. The Strategy pattern and Visitor pattern optimize memory usage by 1%. Ngaogate
et al. (2024), suggested the Strategy pattern for implementation of two machine learning techniques, Back
propagation and Hybrid with Fixed point.

This study employs five distinct algorithms to determine root values for various functions.
Implementing these algorithms in Python is essential to enable the mathematician to more easily assess their
efficiency. To support this, we present the following class structure and strategy design for code

implementation in the research on comparing machine learning algorithms, as shown in Figure 4.

Fvanslae Aol Inenmans 1/74731//5/7@”5/@1/5‘57%5717

164 | Journal of Science and Science Education Vol. 8 No. 1 (Jan. — Jun. 2025)

Hybrid_Edmon_Strategy

- a: float
- b: float
Root
- strategy: Find_Root_Strategy + find(func): void

+ get_input(): void
+ hybrid_edmon{func): float

+find(func): float

E Use
Extends \:j'
Bisection_Strategy
<<abstracr=> - a: float
Find_Root_Strategy - b: float
+ 3 Symboal < —FExtends——

+ find(func): void
+ get_input(): void
+ bisection(func): float

+find(func): void
+ get_input(): void

Exfends
Exionds i Edmon_Halley_Strategy
- initial_guess: int
False_Position_Strategy Newton_Raphson_Strategy + find(func): void
_a float e s i + get_input(): void
- b float initial_guess: int + edmon_halley(func): float
+ find(func): void
+ find{_func): \.roid_ + get_input(): void
+ get_input(): void + newton_raphson(func): float
+ false_posifion(func): float

Figure 4 classes’ structure based on the strategy design pattern

The Strategy pattern enhances flexibility and algorithm switching between methods dynamically without
changing the structure of the underlying code. The main program simply calls each method by using the

same instruction as below.

get function from user

func = input(“function: ")
x = symbols('x’)

1
2
3
il
5.
6. # call Bisection method
7. root = Root(Bisection_Strategy(x))
8. root.find(func)
9

10. # call Hybrid Edmon method

11. root = Root(Hybrid_Edmon_Strategy(x))

12. root.find(func)

The codes at lines 7 and 11 above demonstrate how simple it was to switch between the Bisection
approach and the Hybrid Edmond-Halley’s method. Additionally, the Edmond- Halley, Newton Raphson, and

False position were the three additional research methodolosgies that were simply called.

Copyright by Faculty of Science, Ubon Ratchathani University

IAITIMEIMaNTUaL N IansAny) U7 8 ol 1 (1., - d.6. 2568) | 165

The Root class contains “strategy” as an attribute in order to support polymorphism of strategies defined
by the Find_Root Strategy class.
class Find_Root_Strategy (ABQ):
attribute
x = symbols('x’)
@abstractmethod
def find(self, func):
pass
@abstractmethod
def get_input(self):

pass

Furthermore, the Strategy Pattern improves the mathematical software's maintainability and
extensibility because it allows us to easily add a new class that implements the necessary method while
maintaining the same interface and integrate it into the current system without changing other code. For
instance, all we would have to do is develop a new class that implements the Find Root_Strategy interface

if a new algorithm called the Fixedpoint method were created.
The FixedPointStrategy : another mathematical method for finding Root

class FixedPointStrategy(Find_Root_Strategy):
def find(self, func):

its algorithms

The Strategy design pattern brings several benefits to mathematical applications by decoupling
algorithm selection from core logic. This approach reduces code duplication, improves modularity, and
streamlines testing. By encapsulating each algorithm in its own class, the codebase becomes more modular
and easier to understand. Modularity is essential for testing and validation, allowing for the independent
testing of individual algorithms. This separation simplifies debugging and ensures errors are traceable to
specific algorithms rather than being intertwined within the larger system. For instance, to verify the
functionality of the Hybrid Edmond method, the Hybrid Edmon Strategy class can be unit tested

independently, without concern for the rest of the system.

Conclusion

The hybrid method integrates the bisection method, false position method, and Edmond-Halley
method, utilizing the strengths of each to efficiently approximate roots. In all seven test cases, the method
requiring the fewest iterations was the Hybrid Edmond-Halley method, followed by Newton’ s method, the
false Position method, and the bisection method, respectively, under the same tolerance of 10710 |n some
cases, the Edmond-Halley method and Newton's method fail to find roots due to the selection of an initial
guess. A poorly selected initial guess can obstruct the convergence of these methods to a root. The Hybrid

Edmond-Halley method addresses this limitation by incorporating adjustments that ensure the selection of

Fvanslae Aol Inenmans 1/74731//5/7@”5/@1/5‘57%5717

166 | Journal of Science and Science Education Vol. 8 No. 1 (Jan. — Jun. 2025)

a suitable initial guess, enabling successful root-finding. Additionally, methods such as bisection and false
position often require an excessive number of iterations in some cases. The Hybrid Edmond-Halley method,
however, achieves convergence with a significantly reduced number of iterations when compared to these
methods.

The Hybrid Edmond-Halley method provides an exceptionally efficient solution for root-finding,
requiring very few iterations. Employing a hybrid framework effectively addresses the convergence limitations
of both Newton's method and the Edmond-Halley method. Additionally, the computational time remains
practical, underscoring reliability and suitability for practical implementations.

For coding, the Strategy design pattern is a valuable tool for building adaptable mathematical
software systems. By decoupling algorithms from their clients, it allows for seamless switching between
different solving methods without requiring extensive modifications. This flexibility is crucial in fields like
computational fluid dynamics, data approximation, and machine learning, where problem characteristics or
performance requirements may necessitate different approaches. The Strategy design pattern also enhances
maintainability by reducing code duplication and promoting modularity, making it easier to integrate new
algorithms and maintain existing ones.

Future work may involve developing a hybrid approach for root approximation, combining various

methods to overcome the shortcomings of traditional techniques.

References

Bogdanov, V. V. and Volkov, Y. S. (2013). A modified quadratic interpolation method for root finding. Journal
of Applied and Industrial Mathematics, 17(3), 491-497.

Burden, R. L. and Faires, J. D. (2001). Numerical Analysis. USA: Brooks/Cole.

Cortez, M. V., Ali, N. Z., Khan, A. G. and Awan M. U. (2023). Numerical analysis of new hybrid algorithms for
solving nonlinear equations. Axioms, 12(7), 684.

Gemechu, T. and Thota, S. (2020). On new root finding algorithms for solving nonlinear transcendental
equations. International Journal of Chemistry Mathematics and Physics, 4(2), 18-24.

Gamma, E., Helm, R., Johnson, R. and Vlissides J. (1994). Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley. Indianapolis: Addison-Wesley.

Jun, Y. and Jeon, J. (2019). Modified bisection method for solving nonlinear equations. International Journal
of Scientific and Innovation Mathematical Research, 7(9), 8-11.

Khairin, A., Kusumo, D. and Priyadi, Y. (2022). Analysis of The Impact of Software Detailed Design on Mobile
Application Performance Metrics. Building of Informatics. Technology and Science (BITS), 4(1), 226-234.

Kincaid, D. and Cheney, W. (1990). Numerical analysis mathematics of scientific computing. USA:
Brook/Cole.

Ngaogate, W., Jean, A., Wattanataweekul, R., Janngam, K. and Alherbe, T. (2024). Hybrid Machine Learning
Algorithm with Fixed Point Technique for Medical Data Classification Problems Incorporating Data
Cryptography. Thai Journal of Mathematics, 22(2), 295-310.

Noor, K. I. and Noor, M. A. (2007). Predictor-Corrector Halley method for nonlinear equations. Applied
Mathematics and Computation, 188, 1587-1591.

Qamar, N and Malik, A. A. (2020). Impact of Design Patterns on Software Complexity and Size. Mehran
University Research Journal of Engineering and Technology, 39(2), 342-352.

Copyright by Faculty of Science, Ubon Ratchathani University

5AITIMEIMaNTUaL N IansAny) U7 8 taudl 1 (.. - d.6. 2568) | 167

Sabharwai, C. L. (2019). Blended root finding algorithm outperforms bisection and regula falsi algorithm.
Mathematics, 7(11), 1-16.

Sarcar, V. (2022). Java Design Patterns: A Hands-On Experience with Real-World Examples (Third Edition).
USA: Apress.

Tanakan, S. (2013). A new algorithm of modified bisection method for nonlinear equation. Applied
Mathematical Sciences, 7(123), 16107-16114.

Fvanslae Aol Inenmans 1/74731//5/7@”5/@1/5‘57%5717

