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Abstract  

This research presents a novel method derived from combination of traditional techniques, namely 

the Bisection method, False position method and Edmond- Halley’ s method, to enhance the efficiency of 

root finding algorithms.  The research also compares the performance of this traditional methods with the 

new hybrid method by coding in Python.  The results show that the new method demonstrates superior 

efficiency than the classical methods. Furthermore, a classe’s structure based on the strategy design pattern 

was developed for code implementation, facilitating systematic coding and improving maintainability and 

scalability of the algorithms. 
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บทคัดยอ 

การวิจัยน้ีนําเสนอวิธีการใหมท่ีพัฒนาข้ึนจากการผสมผสานเทคนิคดั้งเดมิ ไดแก วิธีแบงครึ่งชวง วิธีแกตําแหนงผิด และ

วิธีของเอ็ดมอนด-ฮัลเลย เพ่ือเพ่ิมประสิทธิภาพของอัลกอริธึมในการหาคาราก การวิจัยยังเปรียบเทียบประสิทธิภาพของวิธีการ

แบบดั้งเดิมเหลาน้ีกับวิธีผสมใหมโดยการเขียนโคดในภาษาไพธอน ผลการวิจัยแสดงใหเห็นวาวิธีการใหมมีประสิทธิภาพสูงกวา 

วิธีการแบบดั้งเดิม นอกจากน้ี ยังไดพัฒนาโครงสรางของคลาสท่ีอิงกับการออกแบบแบบรูปกลยุทธ เพ่ือการนําโคดไปใชท่ีอยาง

เปนระบบ เพ่ือชวยเพ่ิมความสามารถในการบํารุงรักษาและการขยายตัวของอัลกอริธึม 

คําสําคัญ: วิธีแบงครึ่งชวง; วิธีแกตําแหนงผิด; วิธีของเอ็ดมอนด-ฮลัเลย; วิธีผสม; แบบรูปกลยุทธ 
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Introduction 

In solving the equation f( x)  =  0, sometimes it is not possible to find the solution directly, as the 
equation might be difficult to solve.  However, there are numerical methods that can approximate the root. 
The simplest method is the bisection method, which involves dividing the interval in half.  Another widely 
used method is Newton's method, which uses the slope of the graph and an initial reference point to 
approximate the root. Another method is the false position method. There are several research articles that 
study the approximation of roots.  Gemechu and Thota ( 2020) , proposed new iterative algorithms aimed at 
determining the roots of nonlinear transcendental equations.  These algorithms utilize nonlinear Taylor 
polynomial interpolation combined with a modified error correction term grounded in fixed-point principles. 
Furthermore, the study examines the potential to extend these higher- order iterative methods from single-
variable cases to higher dimensions. Jun and Jeon (2019),  extended the bisection method to solve nonlinear 
equations. The paper discusses convergence properties and iteration counts, and includes visual graphs. 
Sabharwai ( 2019) , proposed a dynamic blend of the bisection method and the regula falsi ( false position) 
method to enhance the performance of root- finding algorithms.  The blended algorithm demonstrated 
superior performance, requiring fewer computational steps to converge and offering a robust solution for 
root- finding problems where classical methods may struggle.  Tanakan ( 2013) , presented a computational 
algorithm that enhances the traditional bisection method for solving nonlinear equations, with the goal of 
increasing both efficiency and accuracy in root approximation.  Burden and Faires ( 2021) , introduced hybrid 
algorithm that combines the strengths of the trisection method and the false position method.  The results 
show that the proposed algorithm surpasses the secant, trisection, Newton- Raphson, bisection, and regula 
falsi methods, in terms of both iterations count and average runtime. Bogdanov and Volkov (2013), modified 
quadratic interpolation method for finding the roots of a continuous function is proposed, focusing on the 
positioning of a parabola that interpolates the original function.  The method identifies the conditions under 
which two interpolating parabolas will be situated on opposite sides of the given function.  Cortez et al. 
(2023) , introduced two novel hybrid methods for solving nonlinear equations by leveraging classical 
techniques like bisection, trisection, and modified false position.  These hybrid methods, termed bisection-
modified false position and trisection-modified false position. 

This research brings together three well- known methods:  The Bisection method, the False Position 
method, and Edmond Halley's Method, to create a new approach called the Hybrid Bisection False Position 
Edmond method ( or Hybrid method) .  The goal is to develop an optimized method that combines the 
strengths of each individual approach, leading to more precise and efficient solutions.  By leveraging the 
stability of the Bisection method, the adaptability of the False Position method, and the fast convergence of 
Edmond Halley's Method, the method aims to achieve faster convergence while maintaining high accuracy. 
The research emphasizes how each method’ s unique advantages enhance the overall effectiveness of this 
hybrid approach, ultimately improving performance in solving nonlinear equations. 

 

Research Objectives 
1. To develop an efficient estimation method for finding the roots of nonlinear equations by refining 

and integrating traditional techniques to enhance accuracy. 
2. Evaluate and compare the effectiveness of traditional methods and hybrid methods to identify which 

approach demonstrates superior performance. 

3. Designing appropriate coding strategies to achieve effective results in solving complex problems. 
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Review of Literature 
In numerical analysis, finding the roots of nonlinear equations is a critical task with significant 

applications in various fields.  There are many methods in numerical method for finding roots, two widely 
used methods for this purpose are the bisection method and the false position method.  The bisection 
method employs the intermediate value theorem to progressively narrow down an interval containing a root, 
ensuring convergence but often at a slower rate.  On the other hand, the false position method enhances 
this process by applying linear interpolation, typically leading to faster convergence when the function 
behaves consistently near the root. In the following sections, we will explore the algorithms, advantages, and 
limitations of these methods, providing a clear understanding of their roles in solving nonlinear equations. 

Traditional Root-Finding Algorithm methods 
 

1. Bisection Method 
The most basic method for finding roots of f(x) = 0 is Bisection method. The bisection method divides 

the interval in half at each step. Before starting to approximate the root, it is necessary to check if there is a 
root within the interval by examining the signs of the function at the endpoints. If the signs at the endpoints 
are opposite, then a root exists within that interval.  Following each halving of the interval, the newly 
calculated 𝑥𝑥- value undergoes evaluation to verify whether the value represents the root or lies within an 
acceptable error margin close to the root.  If the criteria remain unmet, the method proceeds by identifying 
the subinterval most likely to contain the root, based on examining the signs of the function at the endpoints 
and at the newly calculated 𝑥𝑥-value. Any pair of points with opposite signs indicates the presence of a root 
within that interval.  The interval then undergoes further bisection to compute the next 𝑥𝑥- value, and the 
iterative process continues until achieving a satisfactory solution.  The formula for approximate value of the 
root finding with Bisection method is 𝑥𝑥 = 𝑥𝑥𝐿𝐿+𝑥𝑥𝑅𝑅

2
, where 𝑥𝑥𝐿𝐿 is 𝑥𝑥-value on the left of the interval and  𝑥𝑥𝑅𝑅 is x-

value on the right of the interval. 

 

Figure 1 Bisection method 

Figure 1 illustrates the bisection of the interval, with the initial interval is [𝑎𝑎, 𝑏𝑏].  The first midpoint 
obtained is 𝑥𝑥1, and the next interval to consider is [𝑎𝑎, 𝑥𝑥1].  This process continues, yielding 𝑥𝑥2 and so forth, 
until a value close to or equal to the root 𝑥𝑥∗ is reached. 
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The Bisection method, while conceptually straightforward, exhibits notable drawbacks. This method 
converges slowly, resulting in the potential loss of valuable intermediate approximations. However, the most 
significant advantage remains the guarantee of convergence to a solution.  As a result, this method is 
frequently employed as a preliminary step before applying more efficient techniques, Burden and Faires 
(2001); Kincaid and Cheney (1990). 

2. False Position Method 

The False position method or Regular falsi method is an approximation technique for finding roots 
that begins with an initial interval, that requires examination to confirm the existence of a root.  The two 

endpoints are then used to find the intersection point on the x- axis, yielding the first approximation of the 
root, denoted as 𝑥𝑥1.  Subsequently, the interval containing the root is considered, similar to the Bisection 
Method, by examining the signs of the function at the endpoints and at 𝑥𝑥1.  If the signs are opposite, a root 
exists within that interval. This process continues until a root or a value close to the root, within an acceptable 
error margin, is found.  The formula for approximate value of the root finding with False position method is 

𝑥𝑥 = 𝑥𝑥𝐿𝐿𝑓𝑓(𝑥𝑥𝑅𝑅)−𝑥𝑥𝑅𝑅𝑓𝑓(𝑥𝑥𝐿𝐿)
𝑓𝑓(𝑥𝑥𝑅𝑅)−𝑓𝑓(𝑥𝑥𝐿𝐿)

, where 𝑥𝑥𝐿𝐿 is x- value on the left of the interval and  𝑥𝑥𝑅𝑅 is x- value on the right of the 

interval. 

 

Figure 2 False position method 

From Figure 2, the exact root value is 𝑥𝑥∗.  The line connecting the points (𝑥𝑥0, 𝑓𝑓(𝑥𝑥0))  and 
(𝑥𝑥1, 𝑓𝑓(𝑥𝑥1)) intersects the x-axis at (𝑥𝑥2, 0). The line formed by (𝑥𝑥2, 𝑓𝑓(𝑥𝑥2))  and (𝑥𝑥1, 𝑓𝑓(𝑥𝑥1))  intersects the 
𝑥𝑥- axis at (𝑥𝑥3, 0).  This process continues until an approximate root value close to 𝑥𝑥∗ or the true root is 
obtained. 

3. Newton’s method 

The Newton's method or Newton Richardson’s method uses the principle of the slope of the tangent 
line to the graph to find an approximate root value.  At the beginning of root- finding, it is not necessary to 
specify an initial interval; only an initial approximation of the root is needed to estimate the next root value. 

The formula for estimating the next root value is   𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 −
𝑓𝑓(𝑥𝑥𝑖𝑖)

𝑓𝑓′(𝑥𝑥𝑖𝑖+1)
 . 
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Figure 3 Newton’s method 

From Figure 3, the initial root approximation is 𝑥𝑥0. The 𝑙𝑙1 is the tangent line to the graph at the point 

�𝑥𝑥0, 𝑓𝑓(𝑥𝑥0)� and intersects the 𝑥𝑥-axis at (𝑥𝑥10), where 𝑥𝑥1 is the approximate root value. From �𝑥𝑥1, 𝑓𝑓(𝑥𝑥1)�, 
the line 𝑙𝑙2 forms the next tangent to the graph and intersects the 𝑥𝑥 -axis at (𝑥𝑥2, 0), where 𝑥𝑥2 is the new root 

approximation. This process continues until the true root is obtained or an approximate root value within the 

desired error tolerance is reached. 

4. Edmond-Halley’s Method 
 

Edmond- Halley’ s Method or Halley’ s Method is a root approximation technique that offers faster 

convergence than the Newton's method.  While the formula resembles that of Newton's, this utilizes both 

the first and second derivatives for root estimation, Noor and Noor ( 2007) .  The Edmond-Halley method, 

named after the renowned English mathematician and astronomer who lived from 1656 to 1742, represents 

an extension of Newton's method through the incorporation of Taylor series expansion up to the second 

derivative. This method is particularly suitable for functions where the second derivative can be computed 

efficiently. In cases where the computation of the second derivative is challenging, Newton's method serves 

as a viable alternative, as it relies solely on the first derivative. This method requires only a single initial root 

approximation and does not need an initial interval. This method is particularly suitable for functions where 

calculating the first and second derivatives is straightforward. 

 

To find 𝑓𝑓(𝑥𝑥) = 0, Taylor's expansion can be used for the function 𝑓𝑓(𝑥𝑥), resulting in 

𝑓𝑓(𝑥𝑥𝑖𝑖) + (𝑥𝑥 − 𝑥𝑥𝑖𝑖)𝑓𝑓 ′(𝑥𝑥𝑖𝑖) + (𝑥𝑥−𝑥𝑥𝑖𝑖)2

2
𝑓𝑓 ′′(𝑥𝑥𝑖𝑖) = 0. 

. 

Therefore, 𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 −
2𝑓𝑓(𝑥𝑥𝑖𝑖)𝑓𝑓′(𝑥𝑥𝑖𝑖)   

2�𝑓𝑓′(𝑥𝑥𝑖𝑖)�
2
−𝑓𝑓(𝑥𝑥𝑖𝑖)𝑓𝑓′′(𝑥𝑥𝑖𝑖)

 . This formula becomes representative of Newton’s 

method when 𝑓𝑓 ′′(𝑥𝑥𝑖𝑖) = 0. 

All four methods are effective in solving 𝑓𝑓(𝑥𝑥) = 0. A comparison of their strengths and weaknesses 

is provided in the table 1. 
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Table 1 Comparison of root-finding method. 
 

Method Derivatives Required Robustness Speed Applicability 

Bisection None Highly 
robust 

Slow Suitable for any function that 
guarantees a root within the 
specified interval 

False Position None Robust Moderate Appropriate for continuous 
functions, particularly those that 
are not excessively flat 

Newton First derivative Sensitive to 
initial guess 

Fast Effective for functions with 
derivatives and when a good 
initial guess close to the root is 
available 

Edmond-Halley First and second 
derivatives 

Sensitive to 
initial guess 

Fast Ideal for applications demanding 
highly accurate results and when 
second derivatives are accessible 

 

The Hybrid Edmond-Halley Method 
 This section focuses on integrating and enhancing all three methods:  bisection, false position and 

Edmond-Halley method to develop a new, more effective approach. The combined strengths of the bisection 

and false position methods will be utilized, as these methods rely on an initial interval where a root is assured 

to exist, guaranteeing a successful outcome.  

 Algorithm for Hybrid Edmond-Halley method (Hybrid method) 

To solve 𝑓𝑓(𝑥𝑥) = 0, this approach combines three methods: the Bisection method, the False Position 
method, and Edmond-Halley’s method to improve efficiency. The bisection method is a reliable root-finding 
approach that ensures convergence when a sign change exists across the interval, though its convergence 
rate tends to be slow.  In contrast, the false position method often achieves faster convergence through a 
secant-based approximation.  While bisection is preferred for its reliability, false position is advantageous for 
faster convergence under suitable conditions.  A hybrid approach that combines the strengths of both 
methods with an additional corrective technique, the Edmond- Halley method, can yield more efficient and 
accurate root approximations. 

 The process proceeds as follows:  

1. Initialized Parameters: 
1.1 Define function 𝑓𝑓(𝑥𝑥) and the first and second derivatives of 𝑓𝑓(𝑥𝑥). 

1.2 Set the initial interval [𝑎𝑎, 𝑏𝑏]. 
1.3 Define the tolerance tol and the maximum number of iterations max_iter. 

2. Check Initial Interval Validity:  If 𝑓𝑓(𝑎𝑎) ∙ 𝑓𝑓(𝑏𝑏) < 0, there is a root in the interval. If not, exit the 
algorithm. 

3. Choose method: Use Bisection or False position only one iteration to find an approximated root 𝑥𝑥𝑖𝑖 . 
3.1. If absolute error of f(x_Bisection ) < absolute error of f(x_False Position ), choose Bisection. Else 

choose False position. 

3.2 Check tolerance: if |𝑓𝑓(𝑥𝑥𝑖𝑖)| < 𝑡𝑡𝑡𝑡𝑡𝑡, return 𝑥𝑥𝑖𝑖 as the root. 
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4. Improve root: Use Edmond-Halley’s method with initial guess 𝑥𝑥𝑖𝑖 from 3.1. 

Iterate to find root: For each iteration up to max_iter: 

If both 𝑓𝑓′(𝑥𝑥𝑖𝑖)and 𝑓𝑓′′(𝑥𝑥𝑖𝑖) exist: 𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 −
2𝑓𝑓(𝑥𝑥𝑖𝑖)𝑓𝑓′(𝑥𝑥𝑖𝑖)

2𝑓𝑓′(𝑥𝑥𝑖𝑖)2−𝑓𝑓(𝑥𝑥𝑖𝑖)𝑓𝑓′′(𝑥𝑥𝑖𝑖)
 . Evaluate 𝑓𝑓(𝑥𝑥𝑖𝑖+1). 

If 𝑥𝑥𝑖𝑖+1 falls outside the interval [𝑎𝑎, 𝑏𝑏], reset the initial guess of Edmond- Halley’ s method 

as the root from the previously selected root and repeat Edmond-Halley. 

5. Check Convergence:  
If |𝑓𝑓(𝑥𝑥𝑖𝑖+1)| < 𝑡𝑡𝑡𝑡𝑡𝑡, return 𝑥𝑥𝑖𝑖+1 as a root. 

6. Iteration Loop: Increment number of iteration. If number of iteration > max_iter, terminate and report 
no convergence. 

7. Repeat Steps 3-6 until convergence is achieved 

The hybrid method begins with the application of the bisection method and the false position 

method to estimate the root in the interval. If the estimated root does not meet the condition |𝑓𝑓(𝑥𝑥𝑖𝑖)| <
𝑡𝑡𝑡𝑡𝑡𝑡, the root obtained from the method yielding the smaller absolute value of approximated root is selected 

as the initial root for the Edmond-Halley method. The Edmond-Halley method is then employed to refine 

the root approximation. The updated approximation is evaluated against the same convergence 

criterion, |𝑓𝑓(𝑥𝑥𝑖𝑖)| < 𝑡𝑡𝑡𝑡𝑡𝑡.  If this condition remains unmet, the process advances to the next iteration. If the 

updated root fall outside the interval, the root from the previous method is reselected as the initial guess 

for the Edmond-Halley method. This cycle continues until the condition |𝑓𝑓(𝑥𝑥𝑖𝑖)| < 𝑡𝑡𝑡𝑡𝑡𝑡 is satisfied, at which 

point the root is obtained. Thus, each iteration consists of an initial estimation through the bisection and false 

position methods, followed by refinement of the root approximation using the Edmond-Halley method. The 

total number of iterations involves one iteration of the bisection method, one iteration of the false position 

method, and additional iterations from the Edmond-Halley method, as required to achieve convergence. 

 

Advantages of the Hybrid Method 

1. The hybrid method incorporates bisection and false position techniques to effectively manage cases 

where the initial guesses are far from the root, ensuring reliable starting approximations. 

2. By utilizing the cubic convergence property of the Edmond-Halley method, the algorithm achieves rapid 

refinement of the root approximation, significantly reducing the number of iterations required near the root. 

3. The method enhances reliability by seamlessly reverting to the more robust approaches of bisection 

or false position in situations where Newton’s method or Edmond-Halley method fail to converge, thereby 

avoiding computational failure. 

4. The hybrid approach dynamically selects the most appropriate method based on error minimization at 

each iteration, ensuring accuracy and efficiency throughout the root-finding process 

Performance Evaluation 

In order to test the efficiency of the Hybrid Edmond-Halley method, a series of examples will be 

employed with a tolerance of 10−10. We will compare its performance to established techniques, 

including the bisection method, false position method, Newton's method, Edmond-Halley method, and 

Hybrid Edmond-Halley method. This approximation aims to highlight the strengths and weaknesses of each 

method in terms of accuracy and computational efficiency. There are 6 example tests. 
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1.  𝑓𝑓(𝑥𝑥) = 0.3𝑥𝑥2 − 4.5𝑥𝑥 − 15, with exact solution is 𝑥𝑥 =-2.807764064044151. 
2.  𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥 + 0.2𝑥𝑥2 − 10, with exact solution is 𝑥𝑥 =-7.070767433290999. 
3.  𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 𝑥𝑥 − 48.75, with exact solution is 𝑥𝑥 =6.500000000000000. 
4.  𝑓𝑓(𝑥𝑥) = sin(𝑥𝑥 − 1) + 𝑥𝑥2 − 9, with exact solution is 𝑥𝑥 =2.834533011882032. 
5. 𝑓𝑓(𝑥𝑥) = 10𝑙𝑙𝑙𝑙(𝑥𝑥) + 2

𝑥𝑥
− 5, with exact solution is 𝑥𝑥 =1.434103727265730. 

6. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 9.41361457𝑥𝑥2 + 15.23940620𝑥𝑥 − 15.50505725, with exact solution is 
𝑥𝑥 =0.696039315664213. 
The results of these example tests are in Table 2-7. 

Table 2 Approximate root of 𝑓𝑓(𝑥𝑥) = 0.3𝑥𝑥2 − 4.5𝑥𝑥 − 15. 

method
s 

Initial 
interval/

guess 

Number of 
iterations 

Root Absolute error CPU time (seconds) 

Bisection [-10,10] 32 -2.807764064054936 0.000000000066700 0.035902500152588 

False 
position 

[-10,10] 21 -2.807764064028455 0.000000000097076 0.000996589660645 

Newton  -10 6 -2.807764064044152 0.000000000000000 0.000998258590698 

Edmon 
Halley 

-10 4 -2.807764064044152 0.000000000000000 0.002987146377563 

Hybrid  [-10,10] 5 -2.807764064044151 0.000000000000000 0.001994609832764 

 

Table 3 Approximate root of 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥 + 0.2𝑥𝑥2 − 10. 
 

methods Initial 
interval/guess 

Number 
of 

iterations 

Root Absolute error CPU time (seconds) 

Bisection [-10,0] 34 -7.070767433324363 0.000000000094336 0.041887283325195 

False 
position 

[-10,0] 16 -7.070767433281620 0.000000000026516 0.000996589660645 

Newton  -10 5 -7.070767433290999 0.000000000000000 0.000996351242065 

Edmon-
Halley 

-10 4 -7.070767433290999 0.000000000000000 0.003029823303223 

Hybrid  [-10,0] 5 -7.070767433291000 0.000000000000003 0.035856962203979 
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Table 4 Approximate root of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 𝑥𝑥 − 48.75 
 

methods Initial 
interval/guess 

Number 
of 

iterations 

Root Absolute error CPU time 
(seconds) 

Bisection [-10,0] 38 6.500000000021828 0.000000000025466 0.031914949417114 

False 
position 

[-10,0] 13 6.499999999995794 0.000000000058876 0.000954151153564 

Newton  -10 5 6.500000000000000 0.000000000000000 0.001015901565552 

Edmon-
Halley 

-10 4 6.500000000000000 0.000000000000000 0.003029823303223 

Hybrid  [-10,0] 6 6.500000000000000 0.000000000000000 0.003989458084106 

 

Table 5 Approximate root of 𝑓𝑓(𝑥𝑥) = sin(𝑥𝑥 − 1) + 𝑥𝑥2 − 9 
 

methods Initial 
interval/guess 

Number 
of 

iterations 

Root Absolute error CPU time 
(seconds) 

Bisection [-2,4] 37 2.834533011860912 0.000000000003829 0.047030448913574 

False 
position 

[-2,4] 14 2.834533011879617 0.000000000013061 0.000996589660645 

Newton  4 5 2.834533011882032 0.000000000000000 0.001000165939331 

Edmon-
Halley 

4 4 2.834533011882032 0.000000000000000 0.002995967864990 

Hybrid  [-2,4] 5 2.834533011881290 0.000000000004036 0.075797080993652 
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Table 6 Approximate root of 𝑓𝑓(𝑥𝑥) = 10𝑙𝑙𝑙𝑙𝑙𝑙 + �2
𝑥𝑥
� − 5 

 

methods Initial 
interval/guess 

Number 
of 

iterations 

Root Absolute error CPU time 
 (seconds) 

Bisection [0.2,4] 34 1.434103727276670 0.000000000065662 0.057822227478027 

False 
position 

[0.2,4] 24 1.434103727274182 0.000000000050734 0.000995874404907 

Newton  0.2 Exceeded 
maximum 
iterations 

Failed to identify the 
root 

- - 

Edmon-
Halley 

0.2 - Failed to identify the 
root 

- - 

Hybrid  [0.2,4] 5 1.434103727265730 0.000000000000000 0.067799091339111 

 

Table 7 Approximate root of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 9.41361457𝑥𝑥2 + 15.23940620𝑥𝑥 − 15.50505725 
 

methods Initial 
interval/guess 

Number 
of 

iterations 

Root Absolute error CPU time 
 (seconds) 

Bisection [0,10] 33 0.696039315662347 0.000000000055609 0.042885065078735 

False 
position 

[0,10] Exceeded 
maximum 
iterations 

Failed to identify 
the root 

- - 

Newton  10 8 0.696039315664213 0.000000000000000 0.001022577285767 

Edmon-
Halley 

10 6 0.696039315664213 0.000000000000000 0.024210691452026 

Hybrid  [0.2,4] 5 0.696039315664213 0.000000000000000 0.002997159957886 
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Performance testing of the Hybrid Edmond-Halley method (hybrid method) across various types of 

functions reveals mixed results regarding time consumption. In some cases, it requires less time to find the 

root, while in others, it takes more time, with moderate results in certain examples. However, a clear 

advantage, as shown in Tables 2–7, is the hybrid method's consistent success in approximating the root across 

all test cases, unlike other methods that occasionally fail. For example, the Edmond-Halley method fails in 

Table 6, whereas the hybrid method successfully finds the root. Furthermore, in Table 6, the Newton method 

exceeds the iteration limit, and in Table 7, the false position method also surpasses the iteration limit of 

1,000 iterations. Additionally, the hybrid method employs a number of iterations comparable to Newton’s 

method and Edmond-Halley’s method but fewer than the bisection and false position methods. Overall, the 

hybrid method demonstrates exceptional efficiency and the ability to handle all problem scenarios 

effectively. 

Strategy Design Pattern  

The Strategy Design Pattern addresses the growing complexity of mathematical problems in fields 

like computational mathematics, data science, and engineering by offering a flexible framework for algorithm 

management.  This approach allows for seamless integration and interchange of diverse mathematical 

methods without altering the core codebase, significantly improving software maintainability, scalability, and 

efficiency. By enabling dynamic selection of appropriate algorithms based on specific contexts or constraints, 

it overcomes the limitations of traditional, rigid software solutions. This bridging of software design principles 

with mathematical problem- solving not only enhances system flexibility but also fosters innovation in 

computational mathematics, providing a versatile framework for managing algorithms across a wide range of 

applications and facilitating rapid advancements in the field. 

Experts can provide class diagrams as recommended practices in addition to the fundamental ones 

made by software engineers.  The most popular best practices are the Gang of Four ( GoF)  design patterns, 

which were first presented by Gamma et al. (1994). The programs written using most of the design patterns 

were simpler compared to the programs written without using design patterns, Qamar and Malik ( 2020) .          

A family of algorithms is defined by the Strategy Design Pattern, Sarcar (2022), which encapsulates and renders 

replaceable each algorithm. It permits variations in the algorithm that are not dependent on the clients using 

it.  Also, the clients ought not to be aware of the data.  Avoiding exposing intricate, algorithm- specific data 

structures is encouraged by the Strategy pattern. It describes, enumerates, and makes a family of algorithms 

interchangeable.  Khairin, Kusumo and Priyadi ( 2022) , analyzed the impact of design patterns on mobile 

application performance. They found that design patterns can affect application performance depending on 

the design pattern used.  The Strategy pattern and Visitor pattern optimize memory usage by 1%.  Ngaogate 

et al.  ( 2024) , suggested the Strategy pattern for implementation of two machine learning techniques, Back 

propagation and Hybrid with Fixed point.     

This study employs five distinct algorithms to determine root values for various functions. 

Implementing these algorithms in Python is essential to enable the mathematician to more easily assess their 

efficiency.  To support this, we present the following class structure and strategy design for code 

implementation in the research on comparing machine learning algorithms, as shown in Figure 4. 
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Figure 4 classes’ structure based on the strategy design pattern 

The Strategy pattern enhances flexibility and algorithm switching between methods dynamically without 

changing the structure of the underlying code.  The main program simply calls each method by using the 

same instruction as below. 

 

1. # get function from user 
2. func = input("function: ") 
3.  
4. x = symbols('x') 
5.  
6. # call Bisection method 
7. root = Root(Bisection_Strategy(x)) 
8. root.find(func) 
9.  
10. # call Hybrid Edmon method 
11. root = Root(Hybrid_Edmon_Strategy(x)) 
12. root.find(func) 
The codes at lines 7 and 11 above demonstrate how simple it was to switch between the Bisection 

approach and the Hybrid Edmond-Halley’s method. Additionally, the Edmond- Halley, Newton Raphson, and 

False position were the three additional research methodologies that were simply called. 
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The Root class contains “strategy” as an attribute in order to support polymorphism of strategies defined 

by the Find_Root_Strategy class. 

class Find_Root_Strategy (ABC): 

        # attribute 

    x = symbols('x') 

    @abstractmethod 

    def find(self, func): 

        pass 

    @abstractmethod 

    def get_input(self): 

        pass 

 

Furthermore, the Strategy Pattern improves the mathematical software's maintainability and 

extensibility because it allows us to easily add a new class that implements the necessary method while 

maintaining the same interface and integrate it into the current system without changing other code.  For 

instance, all we would have to do is develop a new class that implements the Find_Root_Strategy interface 

if a new algorithm called the Fixedpoint method were created.   

 

The FixedPointStrategy   :  another mathematical method for finding Root 

 

class FixedPointStrategy(Find_Root_Strategy): 

   def find(self, func): 

      its algorithms 

 

The Strategy design pattern brings several benefits to mathematical applications by decoupling 

algorithm selection from core logic.  This approach reduces code duplication, improves modularity, and 

streamlines testing. By encapsulating each algorithm in its own class, the codebase becomes more modular 

and easier to understand.  Modularity is essential for testing and validation, allowing for the independent 

testing of individual algorithms.  This separation simplifies debugging and ensures errors are traceable to 

specific algorithms rather than being intertwined within the larger system.  For instance, to verify the 

functionality of the Hybrid Edmond method, the Hybrid_Edmon_Strategy class can be unit tested 

independently, without concern for the rest of the system. 
 

Conclusion 
  

The hybrid method integrates the bisection method, false position method, and Edmond-Halley 

method, utilizing the strengths of each to efficiently approximate roots. In all seven test cases, the method 

requiring the fewest iterations was the Hybrid Edmond- Halley method, followed by Newton’ s method, the 

false Position method, and the bisection method, respectively, under the same tolerance of 10−10. In some 

cases, the Edmond-Halley method and Newton's method fail to find roots due to the selection of an initial 

guess. A poorly selected initial guess can obstruct the convergence of these methods to a root. The Hybrid 

Edmond-Halley method addresses this limitation by incorporating adjustments that ensure the selection of 
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a suitable initial guess, enabling successful root-finding. Additionally, methods such as bisection and false 

position often require an excessive number of iterations in some cases. The Hybrid Edmond-Halley method, 

however, achieves convergence with a significantly reduced number of iterations when compared to these 

methods. 

The Hybrid Edmond-Halley method provides an exceptionally efficient solution for root-finding, 

requiring very few iterations. Employing a hybrid framework effectively addresses the convergence limitations 

of both Newton's method and the Edmond-Halley method. Additionally, the computational time remains 

practical, underscoring reliability and suitability for practical implementations. 

For coding, the Strategy design pattern is a valuable tool for building adaptable mathematical 

software systems.  By decoupling algorithms from their clients, it allows for seamless switching between 

different solving methods without requiring extensive modifications.  This flexibility is crucial in fields like 

computational fluid dynamics, data approximation, and machine learning, where problem characteristics or 

performance requirements may necessitate different approaches. The Strategy design pattern also enhances 

maintainability by reducing code duplication and promoting modularity, making it easier to integrate new 

algorithms and maintain existing ones.  

Future work may involve developing a hybrid approach for root approximation, combining various 

methods to overcome the shortcomings of traditional techniques. 
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