โมเดลการวัดประสิทธิผลโรงเรียนระดับมัธยมศึกษา : การประยุกต์ใช้การวิเคราะห์พหุระดับ
Main Article Content
Abstract
การวิจัยครั้งนี้มีวัตถุประสงค์การวิจัย คือ 1) พัฒนาโมเดลการวัดประสิทธิผลโรงเรียนระดับมัธยมศึกษา โดยประยุกต์ใช้การวิเคราะห์พหุระดับ 2) ตรวจสอบคุณภาพของโมเดลการวัดประสิทธิผลโรงเรียนระดับมัธยมศึกษา 3) เปรียบเทียบการจัดอันดับโรงเรียน ระหว่างโรงเรียนที่มีการควบคุมและไม่ควบคุมตัวแปรขนาดโรงเรียนและที่ตั้ง กลุ่มตัวอย่าง คือ โรงเรียนระดับมัธยมศึกษา สำนักงานเขตพื้นที่การศึกษามัธยมศึกษา เขต 25 สังกัดสำนักงานคณะกรรมการการศึกษาขั้นพื้นฐาน จำนวน 82 โรงเรียน เครื่องมือวิจัย คือ แบบบันทึกคะแนนผลสัมฤทธิ์ทางวิชาการ (O-NET) วิเคราะห์ข้อมูลเบื้องต้นด้วยสถิติเชิงบรรยาย ประกอบด้วย ค่าร้อยละ ค่าเฉลี่ย () ค่าความเบี่ยงเบนมาตรฐาน (SD) ค่าความเบ้ (skewness) และค่าความโด่ง (kurtosis) ค่าสัมประสิทธิ์สหสัมพันธ์ของอันดับ (The Spearman Rank Correlation Coefficient) โดยใช้โปรแกรมคอมพิวเตอร์ SPSS for window version 16.0 และวิเคราะห์โมเดลประสิทธิผลของโรงเรียน ทั้งโมเดลแบบไม่มีเงื่อนไข (unconditional model) และ โมเดลแบบมีเงื่อนไข (conditional model) ด้วยโปรแกรม HLM for windows ผลการวิจัยพบว่า
1) โมเดลการวัดประสิทธิผลโรงเรียนระดับมัธยมศึกษา เป็นโมเดลมูลค่าเพิ่ม 2 ระดับ มีการควบคุมตัวแปรขนาดโรงเรียน (SIZE) และที่ตั้ง (IN/OUT) ซึ่งพบว่าความเป็นโรงเรียนขนาดใหญ่พิเศษ (SIZEXL) ส่งผลทางบวกมากที่สุดต่อผลสัมฤทธิ์ทางวิชาการอย่างมีระดับนัยสำคัญทางสถิติที่ระดับ 0.01 ส่วนโรงเรียนที่ตั้งนอกเขตเทศบาลส่งผลทางลบต่อผลสัมฤทธิ์ทางวิชาการอย่างไม่มีนัยสำคัญทางสถิติ
2) คุณภาพของโมเดลการวัดประสิทธิผลโรงเรียนระดับมัธยมศึกษา ที่มีการควบคุมตัวแปรขนาดและที่ตั้ง ค่า Deviance ของโมเดลลดลง เท่ากับ 4.25 % แสดงถึงโมเดลมีความกลมกลืนกับข้อมูลดีกว่าโมเดลที่ไม่มีการควบคุมตัวแปร ค่าสหสัมพันธ์ภายในชั้นของโมเดลที่มีการควบคุมตัวแปรลดลง 17.46 % แสดงถึง คะแนนผลสัมฤทธิ์ทางการเรียนระหว่างโรงเรียนแตกต่างกันน้อยลง เมื่อเพิ่มตัวแปรเข้ามาควบคุมในโมเดล
3) ผลการจัดอันดับโรงเรียน พบว่า อันดับของโรงเรียนที่มีการควบคุมตัวแปรและไม่ควบคุมตัวแปร มีการเปลี่ยนแปลงอันดับ 72 โรงเรียน คิดเป็น 87.80 % มีอันดับที่ดีขึ้น 46 โรงเรียน คิดเป็น 63.89 % และมีสัมประสิทธิ์สหสัมพันธ์ของอันดับระหว่างอันดับที่ได้จากโมเดลที่มีการควบคุมและไม่มีการควบคุมตัวแปรอยู่ในระดับปานกลาง เท่ากับ 0.402