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Sea clutter suppression is a critical task in radar systems to enhance target detection 
performance in complex naval environments and at coastlines. This paper discusses 
the use of neural networks for marine clutter suppression and coastal surveillance 
radar clutter suppression. Effective maritime clutter suppression is made possible by 
the Feed Forward Neural Network (FFNN) and Principal Component Analysis 
(PCA) based clutter reduction method, which uses neural network deep learning 
capabilities to automatically identify and extract features and patterns from raw radar 
data. Support Vector Machine (SVM) is utilized for clutter suppression along the 
shoreline. To train and test the network model, a sizable collection of radar 
measurements, including clutter and target echoes, is gathered. After pre-processing, 
the gathered data is used in a specially created model, which uses its underlying 
patterns to distinguish between target echoes and clutter. Then, clutter in real-time 
radar signals is suppressed using the learned neural network models, improving the 
detection of targets on the sea and at the coastline. Performance measures Structural 
Similarity (SSIM) and Signal to Noise Ratio (SNR) shows that the proposed method 
provides improved clutter reduction. 

  
 
Nomenclature 
FFNN - Feed Forward Neural Network 
PCA - Principal Component Analysis 
SVM - Support Vector Machine 
SNR - Signal to Noise Ratio 
SSIM - Structural Similarity 
CFAR - Constant False Alarm Rate 
CNN - Convolutional Neural Network 
GAN - Generative Adversarial Network 
GCN - Graph Convolutional  
SOM - Self Organizing Map 

OTHR - Over the Horizon RADAR 
MLP - Multi-Layered Perceptron 
RBF - Radial Basis Function 
PPI - Plan Position Indicator 
STAP - Space-Time Adaptive Processing 
MTI - Moving Target Indication  
MTD - Moving Target Detection 
SVD - Singular Value Decomposition  
SCSIF - Sea Clutter Suppression Improvement 
Factor 

 
1. Introduction 

Clutter refers to unwanted signals that interfere with the detection of the desired targets. This 
interference can be caused by various sources, such as precipitation, terrain, birds, or man-made 
objects. Radar clutter can degrade the performance of a radar system by making it difficult to 
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distinguish between an actual target and an unwanted signal. It is crucial to assess the stability of a 
neural network when time delays are involved, as these delays can introduce instability, which is 
undesirable for the effective application of such networks. There are various techniques used to 
mitigate clutter in radar systems, such as signal processing algorithms, filtering, and the use of 
different radar frequencies. These methods help improve the radar system’s ability to defeat and track 
targets in the presence of clutter. 

Attaining exact synchronization of carrier frequency and pulse timing between a transmitter 
and scattered receivers is a major problem in the development of a multi-static radar system. The 
problem: radar often picks up unwanted echoes besides actual targets, called clutter. This can be from 
land, sea, weather, birds, or even chaff (deliberate radar countermeasures). There are different types 
of clutter, such as Surface Clutter- from ground or sea, which are usually stationary, though wind or 
waves can add movement. Volume Clutter- mainly weather, like rain or snow, which makes the target 
move and fluctuates. Point Clutter is from individual objects like birds or buildings that may be 
moving or stationary. Here we must consider fluctuations; Ground Clutter stays fairly consistent, and 
due to static features it is known as non-fluctuating, and Weather Clutter constantly moves and 
changes, making it harder to suppress it, and these are known as fluctuating. 

This paper emphasizes Maritime Clutter, which bounces off wind-driven waves. Because the 
sea constantly moves, suppressing this clutter without losing target signals is quite tricky; MTI Radars 
only display moving targets, minimizing clutter issues. Here the main aspect is Doppler Shift. This is 
clutter with movement (waves, wind) that can show a slight shift in radar signal frequency, helping 
to isolate it from stationary targets. Maritime radar clutter in radar systems refers to unwanted radar 
echoes or reflections that arise from the sea surface, waves, rain, or other maritime-related sources. 
This type of clutter can interfere with the detection and tracking of maritime targets such as ships, 
boats, or buoys. Maritime radar clutter presents a significant challenge for radar systems operating 
over bodies of water, as it can obscure the presence of actual targets and degrade the overall 
performance of the radar system. Reducing clutter in maritime radar is essential for accurately and 
dependably detecting maritime targets in diverse weather and sea conditions. There are mainly three 
parameters used in maritime sea clutter, one is the standard deviation of the wave height, which is the 
vertical distance between a wave’s crest and the other two parameters are wave slope and wind speed. 
Maritime clutter can pose significant challenges for navigation and surveillance in maritime 
environments. It can impact the detection and tracking of vessels, making it essential to employ 
effective clutter suppression techniques. Clutter in other environments may affect the performance of 
radar systems for different purposes, such as weather monitoring, air traffic control, or surveillance, 
each with its own set of challenges and requirements. Maritime clutter is distinct in its sources, nature, 
and challenges, compared to clutter encountered in other environments. Specialized techniques are 
often needed to effectively manage and mitigate clutter in maritime radar systems. 

Clutter suppression in radar systems is essential for maintaining the system’s ability to detect 
and track targets accurately in the presence of unwanted signals. Radar systems can enhance their 
ability to detect and track targets by reducing clutter, which leads to a better signal-to-noise ratio and 
fewer false alarms. Clutter suppression is especially important in maritime settings because of the 
prevalence of sea clutter, which originates from the sea surface, waves, and other maritime sources. 
By effectively suppressing sea clutter, maritime radar systems can improve their ability to detect and 
track ships, boats, and other maritime targets with greater accuracy and reliability. Overall, clutter 
suppression in radar systems is vital for optimizing target detection, reducing false alarms, and 
enhancing situational awareness in various operational environments, including maritime settings. 

Radars for coastal surveillance are essential for traffic monitoring and maritime security. 
Nevertheless, clutter, unwanted radar signals reflecting off land and waves, hinders their efficacy. 
The weaker echoes from ships and other interesting targets are obscured by this congestion. 
For the purpose of separating these feeble target echoes from the overwhelming congestion, clutter 
reduction techniques are essential. Neural networks come into play here. Large radar data sets, 
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including clutter and target signatures, can be used to train these intricate algorithms. Neural networks 
can learn to preserve the target echoes, while filtering away clutter, by examining the distinctive 
features of each. This makes it possible for coastal surveillance radars to obtain a better image of the 
maritime environment, resulting in more precise ship and other object detection and tracking. 
 
2. State of art methods 

The detection of maritime targets using radar is crucial for ocean monitoring. In practical 
applications, pulse-compression radar is extensively employed for civilian offshore surface target 
detection. The presence of sea clutter poses a significant challenge, causing interference in the 
detection capabilities of pulse-compression radar. Consequently, this interference results in 
diminished detection performance (Zhang, 2019). 

Due to the non-stationary nature and complexity of clutter statistics in marine radar, obtaining 
satisfactory constant false-alarm rate (CFAR) performance using conventional processors based on 
clutter statistical characteristics is challenging (Zhang, 2019). The primary focus of study (Zhang, 
2019; Greet & Harris, 2011) is to enhance the robustness of CFAR, leading to the proposal of the 
new CFAR method based on the central limit theorem and the logarithmic compression principle of 
the signal. This method involves clutter two-parameter logarithmic compression processing and the 
accumulation of magnitudes average comprehensive CFAR processing. Experimental validation of 
CFAR characteristics and target detection performance in four typical clutter environments 
demonstrates that this method exhibits superior detection capabilities compared to the Non CFAR 
method (Greet & Harris, 2011). But clutter suppression is challenging, particularly for conventional 
algorithms like the constant false alarm rate (CFAR) (Liu et al., 2019). Hence, methods based on deep 
learning are employed for the detection of targets. Deep learning techniques encompass CNNs, 
GCNs, GANs, and SOMs. Dynamic convolution neural network (CNN) mechanism for maritime 
radar target detection adapts to different maritime targets’ varied sizes by employing a dynamic 
convolution structure with multiple filters and adaptive weights. This method outperforms traditional 
CFAR methods and recent deep learning-based approaches (Wang & Li, 2023). Traditional deep 
learning approaches, specifically CNNs, faces challenges in achieving optimal performance for 
maritime target detection, due to the intricate sea clutter environment and target characteristics. It 
emphasizes the tendency of CNNs to process signal samples independently, neglecting the full 
utilization of temporal-spatial domain correlation information. To overcome this limitation, this study 
introduces a novel method for maritime target detection using graph convolution networks (GCNs). 
In this proposed method, graph structure data defines detection units and captures temporal and spatial 
information. The target detection process employs GCN on the signal associated with the nodes (Xu 
et al., 2023). For target detection, a novel approach using a machine learning method is used. This 
method incorporates a cyclic structure network with a pair of generative adversarial networks (GAN) 
to comprehensively learn the characteristics of sea clutter. This transforms the challenge of sea clutter 
suppression into a process of converting clutter radar data into clutter-free radar data. Additionally, 
target-consistency loss is introduced in the network’s cost function to adeptly preserve target 
information while suppressing sea clutter. Consequently, this method not only efficiently eliminates 
sea clutter from radar data, but also safeguards target information from potential damage during the 
clutter suppression process (Ni et al., 2022). In intricate clutter environments, traditional approaches 
often yield numerous clutter residual diagrams. To address this, we introduce a novel clutter 
mitigation technique, SOM (Self Organizing Map), which focuses on target and clutter classification. 
This method focus on radar echo range profile to form a comprehensive feature set. SOM is used to 
tackle the problem of imbalanced datasets (Zhang et al., 2019). Sky wave over-the-horizon radar 
(OTHR) is vital for surveillance beyond direct line-of-sight. However, its operational efficiency often 
diminishes due to transient interferences. Most existing techniques for removing these interferences 
require data interpolation, which can be computationally intensive. Principal Component Analysis 
(PCA) estimates the principal components of clutter and potential targets using interference-free slow 
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time samples. These components are then used to directly extract clutter and targets from the 
contaminated segment without the need for data interpolation (Liu et al., 2019). FFNN introduces 
novel nonlinear surface basis functions for the network’s functional expansion and outlines a network 
optimization method employing an iterative function selection approach. The study presents 
comparative simulation outcomes for surface mappings generated by the FFNN, alongside those 
produced by Multi-Layered Perceptron (MLP) and Radial Basis Function (RBF) architectures. The 
primary objective is to develop a system capable of generating surface data mappings, with a specific 
emphasis on its potential application in sea surface modeling and target detection through sea clutter 
suppression (Panagopoulos & Soraghan, 2002). 

 
3. Clutter suppression using neural networks 

At first, we consider various Plan Position Indicator (PPI) images as sea clutter datasets which 
are fed as input to the network model. When we train a model, it extracts various features and patterns 
from the dataset. Based on the feature identification, the network model suppresses clutter and 
identifies the target easily. After training the model, input data needs to be provided, as well as a test 
set and output identification of the model, which is an optimized sea clutter suppressed image (Figure 
1).  

 
3.1 Types of neural networks 
In the realm of deep learning, various neural networks can be employed to suppress clutter, 

each offering distinct advantages and applications. Radar clutter suppression uses a kind of artificial 
intelligence called Feed Forward Neural Networks, or FFNNs. Labelled data with distinct objectives 
and clutter identification is used to train FFNNs. This enables the network to identify their distinctions 
from one another. After being taught, FFNNs can evaluate radar data and discriminate between 
possible targets (ships) and clutter (wind, waves). 

FFNNs pick up on minute differences in the data that conventional filters can overlook. 
FFNNs are flexible. They can constantly get better at what they do, as they come across more data 
and various patterns of clutter, unlike set filters. FFNN functions essentially as a smart filter, having 
been trained to identify clutter by analyzing prior instances. This enables radars to concentrate on the 
real targets at sea, which are what are really important. 

Principal Component Analysis, or PCA, is a method frequently used for data simplification 
and dimensionality reduction. When it comes to reducing clutter, PCA is useful because finding 
significant differences allows the visualization of clutter data as a point cloud. The primary 
components, or main directions, where the points spread out the most are identified by PCA analysis 
of this data. In reducing data complexity, PCA efficiently compresses the clutter data by concentrating 
only on these key components. This preserves the core structure of the clutter, while reducing the 
amount of information that needs to be processed. In clutter separation from targets, the data analysis 
is made simpler with PCA. Because clutter is more likely to be concentrated along certain primary 
components, it can be distinguished from target signatures, which may be distributed throughout the 
reduced data space. This makes it simpler to recognize and sort through clutter, which eventually 
makes it easier to spot intended objectives. 

Another machine learning method that can be used for tasks involving clutter suppression is 
Support Vector Machines (SVMs). SVMs, as opposed to FFNNs, concentrate on locating a hyper 
plane in a high-dimensional feature space that optimally divides data points indicating targets from 
those representing clutter. In feature extraction pre-processing of the data is important, just as with 
FFNNs. The radar signal is processed to extract characteristics that allow for the successful separation 
of targets from clutter. These traits could include combinations of polarization characteristics, signal 
strength, and the doppler shift. 

For training, labelled data is used to train the SVM, with each data point being categorized as 
either a target or clutter. In the high-dimensional feature space, the training procedure determines the 
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ideal hyperplane that maximizes the margin between the two classes (clutter and target). Here, the 
clutter suppression is based on their location in relation to the defined hyperplane, and newly 
discovered data points can be classified as either clutter or targets by the SVM once it has been 
trained. Data points that land on the hyperplane’s clutter side are categorized as clutter, and are 
suppressible. 

Benefits of SVMs for clutter reduction are Effective Separation: SVMs are well-suited for 
applications where strong clutter separation is essential, because they are excellent at identifying 
distinct boundaries between classes. High-Dimensional Data Handling: SVMs are useful when 
numerous features are utilized to distinguish targets from clutter, since they can handle data in high-
dimensional feature spaces. Memory Efficiency: SVMs operate with little memory consumption, 
because they define the hyperplane using only a subset of data points, known as the support vectors. 

 
 3.2 Different methods for maritime clutter suppression 
  Space-Time Adaptive Processing (STAP) is a radar signal processing technique designed to 
reduce clutter interference and improve target detection in challenging and dynamic radar 
environments. Unlike conventional methods, STAP considers both the time and frequency aspects of 
clutter, acknowledging its non-stationary characteristics. By utilizing multiple radar pulses and 
antennas (Ren et al., 2020), STAP analyzes the spatiotemporal characteristics of received signals. 
This enables the differentiation between clutter and potential targets, especially in scenarios with 
challenging interference, such as sea clutter or terrain reflections. STAP’s adaptability lies in its 
ability to dynamically adjust filter weights and parameters in response to the changing radar 
environment. This adaptiveness optimizes clutter rejection, while maintaining sensitivity to legitimate 
target returns. In maritime applications, where clutter sources exhibit spatial and temporal variability, 
STAP proves particularly effective, contributing to heightened radar performance and precise target 
detection. 
           Support Vector Machines: the Support Vector Machine (SVM) emerges as a machine learning 
algorithm that has found utility in mitigating maritime clutter within radar systems. Operating by 
determining an optimal hyperplane to segregate distinct classes in the data space, SVM, in the realm 
of clutter suppression, can undergo training on annotated data to discern between clutter and genuine 
targets (Tang et al., 2004). Its proficiency in managing non-linear relationships and processing high-
dimensional data renders it well-suited for navigating the intricate and dynamic characteristics 
inherent in maritime environments. The approach to clutter suppression employing SVMs entails the 
model’s training on historical radar returns, enabling it to internalize patterns associated with clutter. 
Following training, SVMs can effectively categorize new radar returns, facilitating the discrimination 
between clutter and potential targets. The efficacy of SVMs in clutter suppression hinges on the 
quality and relevance of the training dataset, and it may be supplemented with other signal processing 
techniques to furnish a holistic solution in maritime surveillance applications. 
 
 3.3 Different steps used in proposed neural network approach 
 Training is a complex process of iterative optimization to enable the model to learn patterns 
and representations from unlabeled data. Initially, a carefully organized dataset is created, usually 
divided into training, validation, and test sets. The architecture of the neural network is then 
established, detailing the layer count, the size of each layer, and the activation functions employed. 
Training itself unfolds through multiple epochs, where each epoch entails a complete pass through 
the training dataset. 
 Testing refers to the evaluation and assessment of a trained model using previously unseen 
held out data, commonly known as test set. The purpose of testing is to gauge how well the neural 
network generalizes to new and unseen examples, providing insights into its ability to make accurate 
predictions on real world data. A separate dataset is reserved for testing. The trained neural network 
model, obtained after the training phase, is loaded for testing, and the test data is fed forward through 
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the neural network using the learn parameters. The performance measures obtained from the testing 
process provide insights into the model’s strengths and weaknesses. Testing is a crucial phase in the 
development of Neural Network models, as it provides a realistic evaluation for their real-world 
applicability. 
 Weights in a neural network are the parameters linked to the connections between neurons 
across various layers of the network. They are pivotal in determining the strength of these 
connections, and are instrumental in shaping the model’s predictive capability. Each connection 
between neurons is assigned a weight, and these weights are fine-tuned during the training phase. 
Initially, when a neural network is initialized, the weights are typically assigned small random values. 
The learning process, steered by a training algorithm and guided by a loss function, entails iteratively 
adjusting these weights to minimize the disparity between the predicted output and the actual labels 
in the training data.  
 
4. Coastal surveillance radar clutter suppression 
       Coastal surveillance radar clutter suppression involves the utilization of diverse methods and 
technologies to alleviate unwanted radar returns or echoes in areas proximate to coastlines. The 
primary goal is to augment the radar system’s ability to identify and monitor relevant targets, such as 
ships or aircraft, amidst the backdrop of ambient noise and disruptions caused by both natural 
elements and artificial structures. The strategies encompass signal processing techniques, adaptive 
radar systems, sophisticated algorithms, polarization diversity, frequency adaptability, and 
compensation for weather effects. Through the efficient reduction of clutter, these methodologies 
contribute to enhancing the precision of target detection and tracking in maritime settings along 
coastal regions (Fickenscher et al., 2012). 
 

4.1 Different methods for Coastal Surveillance Clutter Suppression 
Time Domain Cancellation: Time Domain Cancellation stands as a crucial technique within 

radar systems to alleviate clutter and interference in temporal domains. This approach involves the 
continual processing of radar signals over time, to differentiate between signals originating from 
mobile targets and those arising from stationary clutter. In coastal surveillance radar suppression, the 
application of time domain cancellation is pivotal for enhancing the radar’s efficiency in identifying 
and monitoring pertinent targets. There are some key aspects of time domain cancellation: Moving 
Target Indication (MTI), Range Gating, and Moving Target Detection (MTD) (He et al., 2023). The 
presence of moving targets induces a Doppler shift in the radar return signal, facilitating 
discrimination against stationary clutter. Through the incorporation of MTI filters or methodologies, 
radar systems can suppress or eliminate returns associated with slow-moving or stationary entities. 
Range gating entails the selection of specific ranges of interest while excluding others. By isolating 
particular ranges associated with clutter, the radar system can concentrate on the detection and 
tracking of targets within the desired range. MTD algorithms are deployed to recognize and isolate 
moving targets within radar returns. These algorithms scrutinize the temporal evolution of radar 
echoes, discerning against clutter and spotlighting potential moving targets (Chen et al., 2011). 

Subspace Projection Class Method: Subspace Projection methods represent sophisticated 
signal processing techniques utilized in radar systems to mitigate clutter, especially in coastal 
surveillance scenarios where the distinction between pertinent targets and unwanted clutter is 
paramount (Li et al., 2020). A prevalent subspace projection technique is Principal Component 
Analysis (PCA). PCA is a widely utilized statistical approach for mitigating clutter in coastal 
surveillance radar systems. PCA serves as a subspace projection technique, with the objective of 
reducing data dimensionality while preserving critical information. In the radar system, PCA proves 
beneficial for differentiating clutter from genuine targets, thereby enhancing overall radar 
performance in coastal surveillance scenarios (Lin & Jiang, 2015). In Subspace Projection Class 
method, particularly leveraging PCA proves to be a robust tool for mitigating clutter in coastal 
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surveillance radar systems. By exploiting the inherent correlation structure in clutter returns, PCA 
facilitates the creation of a clutter subspace instrumental in suppressing undesired signals, thereby 
advancing target detection and tracking capabilities in intricate maritime environments. The most 
popularly used algorithm for clutter suppression is Singular Value Decomposition (SVD). Singular 
Value Decomposition constitutes a mathematical technique applicable in radar signal processing for 
the purpose of clutter suppression. This decomposition is integral to clutter suppression 
methodologies, facilitating the identification and separation of predominant clutter components 
within received radar signals. The adaptability of SVD enables it to accommodate variations in clutter 
characteristics over time. SVD proves particularly effective in scenarios where clutter occupies a 
subspace featuring a few dominant modes. By applying SVD for clutter suppression, radar systems 
can elevate their capability to detect and track relevant targets amid clutter. This method capitalizes 
on the mathematical properties of SVD to discern and suppress undesired clutter components, thereby 
enhancing the overall performance of radar systems (Wang et al., 2019). 
 
5. Challenges and opportunities  

Sea clutter suppression in radar systems for maritime and coastal applications presents 
numerous challenges owing to the dynamic and intricate nature of the sea environment. The 
variability of sea clutter is pronounced, influenced by shifting sea states, wind conditions, and surface 
roughness. Effectively adapting clutter suppression techniques to accommodate these fluctuations 
constitutes a substantial challenge. Sea clutter often displays a wide Doppler spread due to the 
movement of ocean waves. Successfully suppressing clutter requires the ability to differentiate 
between clutter and moving targets, considering the dynamic spectrum of clutter. 

Utilizing neural networks for the suppression of sea clutter in radar systems brings forth a 
unique set of challenges, notwithstanding the potent capabilities these networks possess in learning 
intricate patterns from data. Acquiring a satisfactory amount of labeled data specifically tailored for 
training neural networks in sea clutter suppression proves to be a demanding task. The availability of 
sea clutter data featuring accurate clutter and target annotations is pivotal for the effective training of 
models. Neural networks must exhibit adaptability to alterations in sea clutter characteristics, 
influenced by factors such as varying sea states, wind conditions, and diverse clutter environments. 
Developing models that can seamlessly adapt to these changes is imperative. Sea clutter datasets may 
exhibit an imbalance in the distribution of clutter and target data, with clutter instances outnumbering 
target instances.  

Sea clutter suppression offers exciting prospects for advancing radar technology and signal 
processing. By leveraging state-of-the-art signal processing methodologies, which include the 
integration of machine learning and neural networks, there is an opening for the development of 
sophisticated clutter suppression algorithms. Utilizing sophisticated neural network structures, such 
as FFNN and PCA, offers a mean to capture complex patterns present in sea clutter data. This, in turn, 
enhances the system’s ability to differentiate between clutter and genuine targets. Deep learning 
techniques, which enable the generalization of knowledge acquired from one radar system to enhance 
performance in diverse environments with limited labeled data, present additional opportunities. The 
exploration of hybrid models that amalgamate neural networks with traditional signal processing 
methods allows for the synergistic utilization of their strengths, leading to more effective clutter 
mitigation. Moreover, the development of adaptive learning algorithms enables neural networks to 
dynamically adjust parameters, contributing to real-time adaptability in response to changing sea 
clutter conditions. As technology evolves, these opportunities pave the way for improved radar 
performance, minimized false alarms, and enhanced target detection capabilities in maritime 
applications. 
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6. Maritime clutter suppression using proposed method 
 The primary goal of clutter suppression is to discern genuine target signals from undesired 
clutter, thereby optimizing the accuracy and reliability of radar performance. These clutter 
suppression techniques encompass a range of strategies. Sea clutter filtering involves algorithms and 
filters that distinguish radar returns from the sea surface, reducing false alarms. From the literature, 
the neural network based clutter reduction approaches provide improved performance. The proposed 
method flow of neural network approach is shown in Figure 1.  

As a pre-processing method for clutter suppression, PCA is used. This is a dimensionality 
reduction technique that finds the primary components which capture the most important fluctuations 
in the data after analyzing the clutter data. By concentrating on these primary components, PCA 
successfully lowers the dimensionality of the clutter while preserving the crucial data needed for 
target identification. As a result, it is simpler to handle and discern the clutter data from the real 
targets. 

The proposed neural network model consists of total 4 layers, in which there are 2 hidden 
layers. Each hidden layer is designed with 1,024 neurons, and the output layer consists of 626 neurons, 
which matches the size of the input. Mean squared error is used for calculating the loss function, and 
RMS prop optimizer is used. Activation filters ReLU, Leaky ReLU, and Sigmod are used in proposed 
work. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 Proposed flow for clutter processing. 

 
 
Dimensionality reduction in data is handled by PCA. When an image is applied to PCA, it 

searches for and finds the set of orthogonal vectors that best represent the variance in pixel values. 
The mxn image can be flattened and made as a single vector. All the images are represented as 
columns and represent the whole dataset in a matrix. Let the matrix be M. The centered mean value 
is obtained by subtracting the mean vector µ of the columns of M and the mean vector from each 
column vector in M as;  

 
M centered = M-µ                                                               (1) 

 
Later stage Singular Value Decomposition (SVD) is performed using; 
 

M centered =  TUPV                                                                  (2) 
 

Training Data 

Neural Network 
Model 

Clutter Suppression 
Model Test Data Output Results 
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U, V are orthogonal matrices, and P is a diagonal matrix. Here, P matrix contains the singular 
values. The principal components are identified by selecting the largest singular values. 
Dimensionality reduction is obtained by projecting mean centered data onto the subspace spanned by

kU .  The reduced representation Y is obtained as;   
                                        

T
k centeredY U M=                                                                   (3) 

 
The final images are reconstructed using; 
 

Reconstructed kM U Y= +µ                                                                  (4) 
 

Fully connected Feed Forward Neural Networks consist of three important layers: input layer, 
hidden layer, and output layer. Each layer contains different neurons and produces output based on 
activation function. Neuron produces output based on weighted sum of input features and small bias 
b as follows;   

 

1

n

i i
i

k w x b
=

= +∑                                                                      (5) 

 
( )a f k=                                                                        (6) 

 
Here, ix  are the input features, iw are the weights of corresponding input, b is the bias, f is the 

activation function, k is the weighted sum, and a  is the output of the neuron. Sigmoid and ReLU 
activation functions are used in neural network. The sigmoid function is given as; 

 

( ) 1
1 zz

e−σ =
+

                                                                        (7) 

 
And the ReLU is used as; 
 

ReLU(z) = max(0,z)                                                             (8) 
 

During forward propagation, the activations of neurons at each layer is performed using; 
 

( ) ( 1)( ) l l llz w a b−= +                                                                       (9) 
 

Here, f is type of activation function. The output of layer is obtained by; 
 

( )( )( ) ( )
l

l la f z=                                                                      (10) 

 
After the dimensionality reduction of PCA, FFNNs become the main tool for fine-tuned 

clutter suppression. Artificial intelligence models known as FFNNs are modelled after the 
architecture and operations of the biological brain. Here, labelled data that distinguishes between 
target signatures and clutter echoes is used to train the FFNN, as given in Figure 2. The FFNN is 
now equipped to recognize intricate correlations and patterns in the data thanks to this training. After 
being trained, the FFNN may distinguish between possible targets and clutter by analyzing the pre-
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processed clutter data (from PCA). Target identification is improved by the FFNN’s capacity to learn 
complex patterns, which enables it to discriminate between minute differences in clutter and target 
signals. 

PCA uses the features from the input dataset. Here, the number of components is selected for 
dimensionality reduction using n_component parameter in the simulation model. In this paper, this is 
set to 20, meaning the algorithm will retain 20 principal components. The input images are flattened, 
such that they are reshaped where each row represents one image. On the flattened image, PCA is 
applied to analyze the 20 prominent principal components that fit the model for dimensionality 
reduction. After processing, the images are reconstructed by applying inverse transform of PCA to 
the reduced image dataset. 

 

 
Figure 2 Proposed methodology using PCA and FFNN. 

 
Combining PCA and FFNN has several benefits for reducing maritime clutter. The FFNN has 

reduced computational strain, thanks to PCA’s initial data compression, which enables quicker 
processing. Additionally, PCA makes sure the FFNN is trained on the most informative parts of the 
clutter, improving its target identification capabilities, by concentrating on the most pertinent data 
components. In contrast, FFNNs offer greater versatility than conventional filtering methods. As they 
are exposed to more data, they might learn more and more over time, increasing their ability to 
suppress clutter. In real-world marine circumstances, where clutter characteristics might change based 
on weather patterns and sea conditions, this flexibility is essential. 

To put it simply, PCA and FFNN combine to provide a stable and flexible method for 
suppressing marine clutter. PCA extracts the most important information from the input while 
maintaining essential details, while FFNN uses its learning capacity to accurately discern between 
targets and clutter. By combining these two strategies, radar systems in maritime situations become 
much more effective, leading to safer navigation and more successful surveillance activities. 

Comparing the clutter suppression method proposed in the article with existing methods based 
on deep learning can provide valuable insights into its effectiveness and novelty. Deep learning 
methods have gained significant popularity in various fields, due to their ability to automatically learn 
features from data, and generalize well to different scenarios. In this work, deep neural networks, 
based on CNN and SAGAN, are considered for comparison. 
 
7. Results 

The proposed method utilizes PCA and FFNN for maritime clutter reduction. The simulation 
is performed by considering a PPI dataset from MATLAB. The data set is taken from mathworks, 
which consists of 84 pairs of images, along with their responses. 70 images are used for trainings set, 
10 images are taken for validation set, and for the test set, 4 images are considered while performing 
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simulations. The parameter considered in the simulation is 55 m radar height, which operates at a 
frequency of 10 GHz. Small targets and large targets of size 120×18×22 and 200×32×58 m3 are 
assumed in clutter PPI images. The simulated data set uses random parameters of wind speed apf 7 
to 17 m/s, and wind direction of 0 to 180 degrees is considered, with target speed of 4 to 19 m/sec 
around 0 to 360 degrees. 
 
Table 1 Training parameters. 
 

Parameter Value 
Learning Rate 0.1 
Total epochs 80 
Optimizer RMS Prop 
Loss function Mean squared error 

 
 

The data is splitted for testing and training. Simulations are performed up to 80 epochs. The 
results of training process are shown in Figure 3. Performance of proposed method is analyzed using 
performance measures like SSIM and SNR. 

 

 
Figure 3 Training and validation loss of 80 epochs. 
 
 

The above graph illustrates the training process. Training loss refers to the error or discrepancy 
between the predicted outputs of the model and the actual target outputs on the training dataset. 
During the training process, the model’s parameters are adjusted iteratively to minimize this loss. 
Lower training loss indicates that the model is better at fitting the training data. The image shows less 
loss at and after 80 epochs. Hence, 80 epochs is chosen as the suitable number for training. 

Validation loss is similar to training loss, but is calculated on a separate dataset called the 
validation set. The validation set is typically used to evaluate the performance of the model during 
training and to prevent over fitting. Over fitting occurs when the model performs well on the training 
data, but fails to generalize to new, unseen data. By monitoring the validation loss over fitting can be 
detected: if the training loss continues to decrease while the validation loss starts to increase or 
remains stagnant, it suggests that the model is over fitting to the training data. Reduced training loss 
and validation loss gives accurate results for the specific model. 
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7.1 Performance measures for clutter suppression 
  It is very important to learn about performance measures because the model is very effective 
in predicting the output results. Some of the performance measures for clutter suppression are now 
discussed. 
 
 7.1.1 Signal-to-Noise Ratio (SNR) 
            Signal-to-noise ratio performance measure is important in digital and analog communications. 
The strength of the desirable signal in relation to background noise, or the undesired signal, is 
measured by SNR. A predefined formula analyses the two levels and yields the ratio- which indicates 
if the noise level is affecting the desired signal- can be used to calculate S/N. SNR is used as a 
supplementary statistic to comprehend noise constraints, and maybe assess the efficacy of clutter 
reduction strategies. In radar systems, unwanted signals resulting from reflections off non-target 
objects or ambient elements are referred to as clutter, whereas the signal is the echoes from targets of 
interest. 
 

Signal

Clutter Noise

P
SNR

P P
=

+
                                          (11) 

 
PSignal is the power of the Signal 
PClutter is the power of the Clutter 
PNoise is the power of the Noise 
 
 7.1.2 Structural Similarity Index (SSIM) 
 A perceptual metric called the Structural Similarity Index (SSIM) measures the reduction in 
image quality brought on by processing operations like data compression or transmission losses. For 
instance, it can apply standard picture degradations followed by standard image enhancement signal 
processing techniques. SSIM can be applied in a training or assessment procedure to determine how 
well the target signals are recreated following clutter reduction. When converting radar data into a 
visual format, SSIM may be used to evaluate the picture quality of these visualizations. 
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x and y are the images being compared 
𝜇𝜇𝑥𝑥 and 𝜇𝜇𝑦𝑦 are the means of x and y, respectively 
𝜎𝜎𝑥𝑥2 and 𝜎𝜎𝑦𝑦2 are the variances of x and y, respectively 
𝜎𝜎𝑥𝑥𝑥𝑥 is the covariance of x and y 
C1 and C2are small constants to stabilise the division with weak denominator 

 
The Structural Similarity Index (SSIM) is commonly applied to compare images in terms of 

their structural information; it can also be adapted and utilized in other domains, including radar 
signal processing and clutter suppression. In the context of clutter suppression, SSIM can be justified 
and deemed appropriate for several reasons. Firstly, clutter in radar signals often introduces noise and 
distortions that can degrade the quality of the signal. SSIM, by measuring the similarity of structural 
information between two signals, can effectively quantify the extent of distortion or degradation 
caused by clutter. Secondly, clutter in radar signals can exhibit structural patterns or characteristics 
that differ from the desired signal. SSIM’s ability to capture structural similarities or differences 
makes it suitable for identifying and distinguishing clutter from the desired signal. Furthermore, SSIM 
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is sensitive to both luminance and contrast changes, which are common effects of clutter in radar 
signals. By considering both luminance and contrast information, SSIM can provide a comprehensive 
assessment of signal quality, and effectively distinguish clutter from useful signal components. SSIM 
index has values between −1 to 1, where 1 indicates perfect similarity, 0 indicates no similarity, and 
-1 indicates perfect anti-correlation. In this work, when comparing the input image to the output 
image, a lower SSIM value indicates a significant difference between the two, which indicates the 
output image is clutter free. 
 
Table 2 Performance comparison of different methods on measured data. 
 

Parameter SOM SVD CNN SAGAN FFNN & PCA 
SCSIF 10.68 11.14 13.99 14.25 14.32 
SSIM 0.91 0.74 0.70 0.68 0.69 
SNR 75.16 70.25 72.24 71.68 79.82 
SCR 9.21 9.19 12.24 12.11 12.11 

 

 
(a) 

 

 
(b) 

Figure 4 Comparison of proposed method with existing methods. 
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(c) 

 

 
                                                                               (d) 

 
Figure 4 (continued) Comparison of proposed method with existing methods. 

 
 
Here, SSIM values were calculated for various methods such as SOM, SVD, and FFNN & 

PCA. When the above table is observed, FFNN & PCA has a low SSIM and high SNR value 
compared to the remaining methods. So, the proposed method is very effective compared to the 
remaining methods (Table 2). Graphical representations of the results are given in Figures 4a and 
4b. More analysis of the proposed method is performed using SCSIF and SCR performance measures. 
The results are given in Figures 4c and 4d. 

PPI images are processed for maritime clutter. Here, different cluttered PPI images are used 
for analyzing the proposed method, as shown in Figure 5. PPI images in the figure clearly show that 
the maritime clutter is removed for better target detection. 
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Figure 5 Clutter removed images using proposed method. 
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8. Conclusion and future scope 
Employing a combination of Feed-Forward Neural Networks (FFNN) and Principal 

Component Analysis (PCA) has yielded promising results in suppressing sea clutter. This 
methodology has effectively minimized interference from sea clutter, leading to improved precision 
and efficiency in processing radar signals in maritime and coastal environments. The utilization of 
FFNN and PCA has resulted in significant enhancements in the capabilities of radar systems to detect 
and identify targets, underscoring the effectiveness of this approach in addressing the challenges 
posed by sea clutter. Exploring advanced neural network designs, possibly incorporating 
reinforcement learning, could enhance the ability to analyze complex patterns in sea clutter data. 
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