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The efficient mapping of seaweed cultivation over large areas is essential for 
supporting sustainable management of coastal resources. This study introduces a 
novel Spectral-Spatial Deep Learning model that integrates spectral and spatial data 
from high-resolution remote sensing imagery to automate and improve the accuracy 
of seaweed cultivation mapping. Based on a Convolutional Neural Network 
architecture, UNet, enhanced with a Spectral-Spatial Attention Module, the model 
effectively captures the complex relationships between seaweed and its 
environment. PlanetScope imagery, known for its high spectral and spatial 
resolution, serves as the primary input data. The model’s performance was evaluated 
using evaluation metrics, achieving an accuracy of 94.71 %, loss of 13.09 %, 
precision of 80.93 %, recall of 73.63 %, and Intersection over Union (IoU) of 48.51 
% on the training data. For the validation data, the model attained an accuracy of 
93.64 %, loss of 16.75 %, precision of 84.34 %, recall of 57.57 %, and IoU of 42.98 
%. These results demonstrate the model’s ability to rapidly and accurately map 
seaweed cultivation areas, making it a valuable tool for environmental monitoring. 

  
 
1. Introduction 

Seaweed cultivation is a key fishery commodity for Indonesia’s coastal communities, playing 
an important role in supporting the local economy. With vast coastal waters, Indonesia, particularly 
South Sulawesi Province, holds significant potential for seaweed production, with a cultivation area 
of up to 250,000 hectares (BPS Provinsi Sulawesi Selatan, 2021). This substantial potential highlights 
the need for effective monitoring systems to manage seaweed cultivation sustainably. 

Mapping large-scale seaweed cultivation areas presents several challenges that require the 
integration of advanced technologies. Remote sensing, which has been extensively used in 
environmental and coastal resource monitoring, is particularly well-suited for this task due to its 
ability to provide efficient, long-term, and cost-effective monitoring across large areas (Jin et al., 
2023). In this research, the integration of remote sensing data with artificial intelligence (AI) 
technology, particularly Deep Learning (DL), is proposed to address the limitations of traditional 
methods in seaweed mapping. 
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Conventional methods, such as visual interpretation, work well for small areas, but are time-
consuming and require expert knowledge (Langford et al., 2021). Digital classification methods 
(Andréfouët et al., 2021; Pratama & Albasri, 2021) also face challenges, including spectral confusion 
between seaweed and other marine features and the need for parameter adjustments with new datasets. 
Recently, AI technologies like machine learning (ML) have been applied to seaweed mapping (Cheng 
et al., 2022; Nurdin et al., 2023), but basic ML approaches often rely on manual feature extraction 
and struggle with large, high-resolution datasets. To overcome these challenges, DL offers a 
promising solution by automatically extracting complex, non-linear patterns from remote sensing 
images, which is crucial for mapping heterogeneous objects like seaweed cultivation (LeCun et al., 
2015; Ma et al., 2019). 

In recent years, DL algorithms have gained popularity in remote sensing image analysis, 
finding applications in tasks such as image classification, segmentation, and object detection. For 
seaweed cultivation mapping, DL models can automatically learn complex patterns from image data, 
eliminating the need for extensive manual feature extraction or domain expertise (Marquez et al., 
2022). Among the most widely used DL models for remote sensing data is the Convolutional Neural 
Network (CNN), which processes data in array form and is particularly suited for high-resolution, 
multiband remote sensing imagery (LeCun et al., 2015). 

One specialized CNN architecture commonly used for image segmentation is U-Net. 
Originally developed for biomedical imaging (Ronneberger et al., 2015), U-Net has since been 
adapted for various remote sensing applications. For example, studies have demonstrated its 
effectiveness in semantic segmentation of high-resolution imagery (Wang et al., 2023), offshore 
aquaculture extraction (Liu et al., 2023), and aerial building segmentation (Li et al., 2021). The U-
Net architecture features a U-shaped design, consisting of a contraction path (encoder) for feature 
extraction and an expansion path (decoder) for up-sampling and image segmentation (Alam et al., 
2021). However, despite its strengths, U-Net has limitations, particularly in accurately identifying 
object boundaries, as it primarily focuses on spatial features. Remote sensing images also contain 
valuable spectral features that are essential for tasks like seaweed mapping, which involves 
distinguishing objects based on spectral variations across different bands (Zhu et al., 2021).  

To address these limitations, U-Net architecture was enhanced by incorporating spectral-
spatial attention mechanisms. These attention modules allowed the model to focus on both significant 
spectral features and spatial dependencies, improving its ability to accurately classify objects while 
reducing redundant information and noise (Mei et al., 2019; Dang et al., 2022). The integration of 
these mechanisms is crucial for applications such as seaweed cultivation mapping, where high 
accuracy and precision are required for effective monitoring. 

The integration of remote sensing data and DL in mapping seaweed cultivation needs further 
development to support the provision of spatial data on seaweed farming. One of the remote sensing 
datasets with significant advantages in terms of resolution is PlanetScope imagery. PlanetScope 
provides high spatial resolution (Ground Sample Distance of approximately 3 m), enabling detailed 
analysis of seaweed cultivation areas. Its frequent revisit times, with daily satellite overpasses, allow 
for continuous monitoring of seaweed cultivation dynamics over time. The PlanetScope spectral 
bands cover visible and near-infrared regions (Table 1), which are crucial for distinguishing seaweed 
from other marine features based on their spectral characteristics (Planet, 2023). 
 The complexity of mapping seaweed cultivation, particularly in coastal areas with diverse 
marine environments, requires advanced techniques capable of capturing intricate spectral and spatial 
variations. Traditional remote sensing methods for seaweed cultivation mapping often rely on simple 
enhancement techniques or spectral indices, which may have limitations in accurately distinguishing 
seaweed from other marine features. These methods can also be sensitive to variations in 
environmental conditions, such as water clarity. To address these limitations, a Spectral-Spatial Deep 
Learning model, capable of learning complex and non-linear relationships between spectral and 
spatial features in remote sensing data, was proposed. PlanetScope imagery was chosen as the primary 
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data source due to its high spatial resolution, frequent revisit times, and spectral bands well-suited for 
differentiating seaweed from other marine features. This combination of characteristics provided a 
valuable dataset for training and evaluating the model that was developed. Therefore, this approach 
was expected to enhance the accuracy and robustness of seaweed detection, even in challenging 
environments. 
 
2. Research method 
 2.1 Research location 

This research was conducted in Pangkajene and Islands Regency (Pangkep), which focuses 
on the Marang District area. Geographically, Marang District is located between 119o29’24’’ - 
119o34’00’’ East (E) and between 4o37’12’’- 4o2’33’’ South (S). The map of this research area can 
be seen in Figure 1. This area is one of the areas in Pangkep Regency where people actively produce 
seaweed. 

 

 
Figure 1 Map of the research area. 
 
 2.2 Input data description 

 The data source used in this study was remote sensing imagery from PlanetScope. 
PlanetScope is a satellite constellation owned by Planet, consisting of multiple individual satellite 
groups. The latest product available from the PlanetScope satellites is the third generation, known as 
SuperDove (PSB.SD). This data can be accessed at https://www.planet.com. The SuperDove sensor 
is equipped with eight spectral bands, including coastal blue, blue, green I, green II, yellow, red, red-
edge, and near-infrared (NIR). The specific wavelength range for each band can be found in Table 
1. PlanetScope imagery comes in several levels, each representing different stages of correction. 
PlanetScope Level 3B is a PlanetScope Ortho Scene product that has undergone orthorectification 
and radiometric correction, either to Top of Atmospheric Radiance (at sensor) or Surface Reflectance 
(SR). The Ground Sample Distance (GSD) of PlanetScope imagery is 3.7 m, but orthorectified 
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imagery offers a spatial resolution of 3 m. Additionally, PlanetScope provides daily temporal 
resolution, making it highly suitable for continuous monitoring purposes (Planet, 2023). 

The PlanetScope imagery used as input data to build the model was acquired on March 22, 
2021, May 1, 2021, and May 12, 2021. The imagery was selected from the months of March to May 
because, visually, these months exhibit significant seaweed cultivation activity. Additionally, the 
chosen scenes have high image quality, with cloud cover below 20 % and full coverage of the entire 
study area. The imagery from April 19, 2023 was used for prediction purposes. All these images had 
the same correction level in order to maintain consistency across the data. In this process, we acquired 
selected PlanetScope imagery with the level of correction in the SR level 8-band analytic images and 
harmonized images. However, the NIR channel was not included in the entire process of the model, 
because it dis not provide significant information on seaweed, resulting in the input only having 7 
bands. All processes in this study were carried out on a computer with the following specifications: 
1) Intel i9-14900F-20 processor, and 2) MSI RTX 4080 16GB Ventus 3X OC GPU. The Deep 
Learning model was built using the TensorFlow library. 
 
Table 1 Spectral bands of the SuperDove (PSB.SD) sensor of the PlanetScope imagery. 
 

Bands Wavelengths (nm) 
Coastal Blue 431 - 452 

Blue 465 - 515 
Green I 513 - 549 
Green II 547 - 583 
Yellow 600 - 620 

Red 650 - 680 
Red-Edge 697 - 713 

NIR 845 - 885 
 

 
 
Figure 2 Research flowchart of mapping seaweed using DL. 
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 2.3 Method 
The method used in this study can be split into three sections (Figure 2): (A) Building training 

data from preprocessing of PlanetScope imagery and generation of image annotations, (B) generation 
of datasets, and (C) seaweed mapping and accuracy assessment. 
 

2.3.1 Building training data 
2.3.1.1 Data pre-processing 
The purpose of pre-processing data is to visually enhance the image quality before further 

processing to produce image annotations. The processes involved: 1) image sharpening, using 
contrast stretching algorithms, and 2) applying spatial or focal filtering with a moving window, to 
obtain minimum value of the filtered pixel values (Bajpai et al., 2017). 

In detail, the first process involves sharpening the image by enhancing the contrast 
linearly. The minimum and maximum values of the image are set to a new specified range, utilizing 
the full range of available brightness values. This process stretches the pixel values between two 
specific quantiles, effectively improving the visual contrast. This can be referred to as the min-max 
contrast linear stretch, as described in Eq. (1). The stretched pixel value (𝑅𝑅′𝑖𝑖𝑖𝑖) at position (i,j) is 
computed using: 

 
𝑅𝑅′𝑖𝑖𝑖𝑖 = � 𝑅𝑅𝑖𝑖𝑖𝑖−𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚− 𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚
� ∗  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝑁𝑁𝐿𝐿𝑁𝑁𝐿𝐿𝐼𝐼             (1) 

 
In this equation, 𝑅𝑅𝑖𝑖𝑖𝑖 is the original pixel value at position (i,j), 𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚 and 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 represent 

the minimum and maximum values in the original image, respectively, and the “Number of Intensity 
Levels” defines the total number of possible intensity levels assignable to a pixel. For instance, in a 
grayscale image with a maximum intensity of 255, this makes 255 the highest intensity value used. 

The second process involves focal filtering using a 3×3 kernel applied to each pixel. This 
kernel defines the neighborhood of each pixel considered in the focal filtering operation. The 
minimum function is applied to extract the minimum value from all the pixels within the 3×3 window 
surrounding each central pixel. This results in new data, where each pixel contains the minimum 
value from the surrounding 3×3 window. The object boundary become smoother, so that the object’s 
appearance becomes more real. Mathematically, the focal filtering process can be calculated as shown 
in Eq. (2). 

 
𝐹𝐹′𝑖𝑖𝑖𝑖 = 𝑁𝑁𝐼𝐼𝐼𝐼�𝐹𝐹𝑖𝑖+𝑘𝑘,𝑖𝑖+𝑙𝑙�−1 ≤ 𝑘𝑘 ≤ 1,−1 ≤ 𝐿𝐿 ≤ 1�             (2) 

 
In this equation, 𝐹𝐹′𝑖𝑖𝑖𝑖  represents the pixel value in the filtered image at position (i,j) after 

applying the filter. 𝐹𝐹𝑖𝑖+𝑘𝑘,𝑖𝑖+𝑙𝑙 corresponds to the pixel values from the original image that fall within a 
3×3 window centered at pixel (i,j). The offsets k and l range over -1, 0, 1, thereby including all 
neighboring pixels within the window. 

The outcome of these processes was expected to yield a more accurate seaweed masking 
for the training data. Subsequently, the output imagery was adjusted to match the specification 
configurations of the next process, where the images were scaled to 8-bit (0 - 255) and reduced to 
only 3 bands (Red, Green I, and Blue bands) which were then composited into RGB composite or a 
true color image. 

 
2.3.1.2 Segment anything model  
Since the collection of label data through the image annotation process needed to be quick 

and accurate, the Segment Anything Model (SAM), developed by Meta AI (Kirillov et al., 2023), was 
used; a state-of-the-art zero-shot segmentation process to segment objects in images. SAM has the 
capability to generalize various datasets for image segmentation without requiring additional training 
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data (Osco et al., 2023). Therefore, this method was used to automatically obtain labels for seaweed 
and non-seaweed. The prepared and enhanced PlanetScope imagery data were used as input data, and 
SAM was applied to this data using a transfer learning system. Principally, SAM employs a zero-shot 
learning concept by utilizing prompting. However, this research did not use specific prompting, 
instead utilizing the SAM automatic mask generator to produce masks (Wu & Osco, 2023). The use 
of the SAM’s automatic mask generator can directly produce labels; however, to ensure these labels 
were accurate, it was necessary to configure its advanced parameters such as points per side, 
Intersection over Union (IoU) predict threshold, stability score threshold, and others. Furthermore, 
the results of SAM were used as label data for the next process. 

 
2.3.2 Preparing datasets 
2.3.2.1 Image augmentations 
Before the image augmentation process, the images and their annotations were first 

cropped into several patches according to the input dimension size to be used. Then, image 
augmentation is performed on these patches. The purpose of image augmentation is to increase the 
number of new datasets and enhance image variability to prevent overfitting. The augmentation 
methods used to enhance image variability include center crop, random rotate, random sized crop, 
horizontal and vertical flip, and sharpen (Takahashi et al., 2015). Image augmentations were executed 
using the Albumentation library. 

 
2.3.2.2 Split data 
The models were built from the collected dataset, which comprised 2,835 pairs of images 

and masks. This dataset was derived from various image scenes representing seaweed cultivation 
water conditions and had undergone image augmentation. The data was then divided into two groups: 
training data and validation data, with proportions of 80 and 20 %, respectively. 

 
2.3.3 Training the Deep Learning model  
The model training process involved constructing a U-Net architecture, which integrated 

a combination of a Spectral Attention Module (SpeAM) and a Spatial Attention Module (SpaAM). 
The combination of these two modules led to the proposed Spectral-Spatial Attention Module 
(SSAM). Originally, SSAM was derived from the Convolutional Block Attention Module (CBAM), 
which was proposed by Woo et al. (2018). While CBAM is predominantly used in non-remote sensing 
data, several studies have adapted it for remote sensing data. SSAM can be integrated into various 
CNN architectures, including UNet. Studies that have incorporated SSAM into UNet have 
demonstrated strong model performance (Dang et al., 2022; Wang et al., 2022; Zhu et al., 2021). In 
this study, the SSAM configuration from the work of Yan et al. (2021) was adopted, whereby SSAM 
was placed in each layer of the UNet to preserve spectral and spatial features across all layers. 
However, several modifications were made, including adjusting the input image size, fine-tuning 
hyperparameters, and updating the evaluation metrics used. These adjustments were made to achieve 
an optimal configuration and enhance the model’s performance in mapping seaweed cultivation. A 
more detailed explanation of the modules used and the overall architecture are outlined below: 
 

2.3.3.1 Spectral Attention Module (SpeAM) 
The SpeAM was used to extract spectral features present in each channel of the 

PlanetScope imagery. As illustrated in Figure 3, the input feature of SpeAM is represented by 𝐹𝐹 ∈
ℝ𝐻𝐻×𝑊𝑊×𝐶𝐶, where H is the height, W is the width, and C is the number of channels. The input data 
underwent global average pooling (AvgPool) and global max pooling (MaxPool) operations. These 
operations each produced a 1*1*C vector. AvgPool can be calculated based on Eq. (3) and MaxPool 
on Eq. (4). The average value of each channel spectral denotes 𝐹𝐹𝑚𝑚𝑎𝑎𝑎𝑎 ∈ ℝ1×1×𝐶𝐶 and the maximum 
value of each channel spectral denotes 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ∈ ℝ1×1×𝐶𝐶. 
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𝐹𝐹𝑚𝑚𝑎𝑎𝑎𝑎(𝑐𝑐) = 1
𝐻𝐻∗𝑊𝑊

∑ ∑ 𝐹𝐹𝑊𝑊
𝑖𝑖=𝑖𝑖

𝐻𝐻
𝑖𝑖=1 (𝐼𝐼, 𝑗𝑗, 𝑐𝑐)   ∀𝑐𝑐 ∈ {1,2, … ,𝐶𝐶}             (3) 

 
𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐) = max

𝑖𝑖,𝑖𝑖
𝐹𝐹 (𝐼𝐼, 𝑗𝑗, 𝑐𝑐)   ∀𝑐𝑐 ∈ {1,2, … ,𝐶𝐶}             (4) 

 
The resulting 𝐹𝐹𝑚𝑚𝑎𝑎𝑎𝑎  and 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚  vectors were then combined and processed through a 

network consisting of a multilayer perceptron (MLP) with a single hidden layer. Through, these two 
vectors passed through two Fully Connected Layers (FCL), followed by the Rectified Linear Unit 
(ReLU) activation function (𝜎𝜎). After each spectral vector passed through the shared network or MLP, 
two output vectors were produced, namely the MLP output of 𝐹𝐹𝑚𝑚𝑎𝑎𝑎𝑎 (𝑀𝑀𝑚𝑚𝑎𝑎𝑎𝑎) and the MLP output of 
𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 (𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚). Both can be calculated based on Eqs. (5) and (6), respectively. In the calculation, there 

is a weight (𝑊𝑊 ∈ ℝ𝐶𝐶×𝐶𝐶
𝑟𝑟) of each FCL which has a reduction ratio (r). Each weight represents 𝑊𝑊1 for 

the first FCL and 𝑊𝑊2 for the second FCL. 
 

𝑀𝑀𝑚𝑚𝑎𝑎𝑎𝑎 = 𝑊𝑊2𝜎𝜎�𝑊𝑊1𝐹𝐹𝑚𝑚𝑎𝑎𝑎𝑎�             (5) 
 
𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑊𝑊2𝜎𝜎(𝑊𝑊1𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚)             (6) 

 
These output vectors were then combined using element-wise addition (+). Finally, the 

spectral attention weights were obtained using the sigmoid activation function (𝛿𝛿 ). This can be 
calculated based on Eq. (7): 

 
𝑀𝑀𝑐𝑐 = 𝛿𝛿�𝑀𝑀𝑚𝑚𝑎𝑎𝑎𝑎 + 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚�             (7) 
 

The final result of the spectral attention map calculation (𝑀𝑀𝑐𝑐 ∈ ℝ1×1×𝐶𝐶 ) was then 
multiplied by the input data to produce spectral attention (SpeAM) output (Dang et al., 2022; Wang 
et al., 2022; Yan et al., 2021; Zhao et al., 2024; Zhu et al., 2021). SpeAM can be calculated based on 
Eq. (8): 

 
𝐹𝐹′ = 𝐹𝐹 ∗  𝑀𝑀𝑐𝑐             (8) 

 
In this equation, * represents the element-wise multiplication, and 𝐹𝐹′ ∈ ℝ𝐻𝐻×𝑊𝑊×𝐶𝐶  

represents the output of the SpeAM.  
 

 

 
2.3.3.2 Spatial Attention Module (SpaAM) 
The Spatial Attention Module (SpaAM) was used to effectively learn the spatial features 

of seaweed in PlanetScope imagery. As illustrated in Figure 4, the input feature of SpaAM is 
represented by the result of SpeAM (𝐹𝐹′). The process began by applying AvgPool (𝐹𝐹′𝑚𝑚𝑎𝑎𝑎𝑎 ) and 
MaxPool (𝐹𝐹′𝑚𝑚𝑚𝑚𝑚𝑚) operations to the input data along the channel axis of the PlanetScope imagery. 
This resulted in an output of Height (H) * Width (W) * 1 or  𝐹𝐹′𝑚𝑚𝑎𝑎𝑎𝑎/𝑚𝑚𝑚𝑚𝑚𝑚 ∈ ℝ𝐻𝐻×𝑊𝑊×1. Mathematically, 
AvgPool can be calculated based on Eq. (9) and MaxPool based on Eq. (10): 
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𝐹𝐹′𝑚𝑚𝑎𝑎𝑎𝑎(𝐼𝐼, 𝑗𝑗) = 1
𝐶𝐶
∑ 𝐹𝐹′𝐶𝐶
𝑘𝑘=1 (𝐼𝐼, 𝑗𝑗,𝑘𝑘)   ∀𝐼𝐼 ∈ {1, … ,𝐻𝐻}, 𝑗𝑗 ∈ {1, … ,𝑊𝑊}             (9) 

 
𝐹𝐹′𝑚𝑚𝑚𝑚𝑚𝑚(𝐼𝐼, 𝑗𝑗) = max

𝑘𝑘
𝐹𝐹′ (𝐼𝐼, 𝑗𝑗,𝑘𝑘)   ∀𝐼𝐼 ∈ {1, … ,𝐻𝐻}, 𝑗𝑗 ∈ {1, … ,𝑊𝑊}           (10) 

 
Next, the outputs from these two operations (𝐹𝐹′𝑚𝑚𝑎𝑎𝑎𝑎  and 𝐹𝐹′𝑚𝑚𝑚𝑚𝑚𝑚 ) were concatenated 

(𝑐𝑐𝑜𝑜𝐼𝐼𝑐𝑐𝑐𝑐𝐼𝐼), followed by a convolution operation (𝐶𝐶𝑜𝑜𝐼𝐼𝐿𝐿2𝐷𝐷) and a sigmoid activation function (𝛿𝛿) to 
obtain the spatial attention output, which represents the contribution of each pixel (Dang et al., 2022; 
Wang et al., 2022; Yan et al., 2021; Zhao et al., 2024; Zhu et al., 2021). Mathematically, SpaAM can 
be calculated based on Eqs. (11), (12), (13), sequentially: 

 
𝐹𝐹" =  𝑐𝑐𝑜𝑜𝐼𝐼𝑐𝑐𝑐𝑐𝐼𝐼(𝐹𝐹′𝑚𝑚𝑎𝑎𝑎𝑎,𝐹𝐹′𝑚𝑚𝑚𝑚𝑚𝑚,𝑐𝑐𝑎𝑎𝐼𝐼𝐼𝐼 =  −1)           (11) 
 
𝑀𝑀𝑠𝑠 = 𝛿𝛿(𝐶𝐶𝑜𝑜𝐼𝐼𝐿𝐿2𝐷𝐷(𝐹𝐹",𝑜𝑜𝐼𝐼𝐿𝐿𝐼𝐼𝑁𝑁𝑁𝑁𝐼𝐼 =  1,𝑘𝑘𝑁𝑁𝑁𝑁𝐼𝐼𝑁𝑁𝐿𝐿_𝐼𝐼𝐼𝐼𝑠𝑠𝑁𝑁 =  7))           (12) 
 
𝐹𝐹′′′ = 𝐹𝐹′ ∗ 𝑀𝑀𝑠𝑠           (13) 
 

In these equations, 𝐹𝐹" ∈ ℝ𝐻𝐻×𝑊𝑊×2 denotes the result of concatenated the average and max 
pooled features along the channel spectral axis,  𝑀𝑀𝑠𝑠 ∈ ℝ𝐻𝐻×𝑊𝑊×1 denotes the spatial attention map, 
𝐶𝐶𝑜𝑜𝐼𝐼𝐿𝐿2𝐷𝐷 denotes the convolution operation with 7*7 kernel, and 𝐹𝐹′′′ ∈ ℝ𝐻𝐻×𝑊𝑊×𝐶𝐶 denotes the output 
of the SpaAM. 

 

 
 

Figure 4 Spatial Attention Module (SpaAM). 
 

2.3.3.3 Spectral-Spatial attention module (SSAM) 
The Spectral-Spatial Attention Module (SSAM) was arranged sequentially to leverage 

the potential of both spectral and spatial attention simultaneously. SSAM could be integrated into the 
training process. As illustrated in Figure 5, the process began from the image being multiplied by the 
SpeAM calculation. The result of the SpeAM calculation served as the input for the SpaAM 
calculation. Then, the input was multiplied by SpaAM. Thus, this sequential operation resulted in 
SSAM output. Mathematically, SSAM can be calculated based on Eq. (14): 

 
𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐹𝐹′′′ = (𝐹𝐹 ∗ 𝑀𝑀𝑐𝑐) ∗ 𝑀𝑀𝑠𝑠           (14) 
 

In this equation, 𝐹𝐹𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 ∈ ℝ𝐻𝐻×𝑊𝑊×𝐶𝐶was the final output after applying both SpeAM and 
SpaAM to the input feature map (𝐹𝐹). 
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Figure 5 Spectral-Spatial Attention Module (SSAM). 

 
 

Next, the SSAM was integrated into the U-Net architecture, proposing the Spectral-
Spatial attention U-Net (SSUNet) model. This integration was proposed because convolutional layers 
typically ignore spatial and spectral channel correlations, instead focusing on processing spatial 
information around the central pixel of the sample. 

 
2.3.3.4 Spectral-Spatial attention UNet (SSUNet) for seaweed mapping 
As illustrated in Figure 6, the SSUNet architecture broadly consisted of two layers: the 

encoder and the decoder. In the encoder layer, the process included convolutional layers, pooling, 
and SSAM. The convolutional layers used 3*3 kernel combined with the ReLU activation function. 
The convolution process was performed twice, and the results were then applied to the SSAM. 
Following this, Max pooling with a 2*2 kernel was performed to reduce the dimensions of the feature 
map.  

The decoder layer included transposed convolution (up-convolution), regular 
convolution, concatenation, and SSAM. The transposed convolution used a 2*2 filter. The output was 
then concatenated with features from the encoder at the same level in a process called a skip 
connection. This was followed by two 3*3 regular convolutions, each accompanied by the ReLU 
activation function. The results of these convolutions were then processed by the SSAM before 
undergoing up-convolution to the next layer. Finally, the output from the decoder layer passed 
through a 1*1 convolution with sigmoid activation. The sigmoid activation function provided a 
segmentation mask that represented pixel-by-pixel classification of the image. SSAM was placed 
together in each layer of the U-Net (Yan et al., 2021). Hence, the SSUNet was proposed in this study 
to be used for mapping seaweed cultivation areas. 

 
 

 
 
Figure 6 Spectral-spatial attention UNet (SSUNet). 
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Before training the model, the hyperparameters were carefully configured to produce the 
best model. The hyperparameters used in the training process included the learning rate, batch size, 
and the number of epochs. The model was trained using the Adam optimizer and incorporated an 
early stopping mechanism to prevent overfitting. 

 
2.3.4 Evaluation metrics 
During the training process, the model required performance evaluation or accuracy 

testing to achieve an optimal model and avoid overfitting. The data used in the training process 
included training data and validation data, both of which were run sequentially in each iteration 
(epoch). The model’s performance was evaluated using various metrics, providing accuracy values 
for each dataset used. The evaluation metrics in this study included accuracy, loss function, precision, 
recall, and Intersection over Union. Since the segmentation results produced two classes, the loss 
function used was binary cross-entropy (BCE). In the process of calculating the evaluation metric, 
the true positive (TP), false positive (FP), true negative (TN), and false negative (FN) values were 
determined. Mathematically, evaluation metrics such as accuracy, precision, recall, and IoU can be 
calculated using Eqs. (15), (16), (17), and (18), sequentially. The detailed formulations are explained 
as follows: 

 
𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝐼𝐼 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇
           (15) 

 
𝑝𝑝𝑁𝑁𝑁𝑁𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝑜𝑜𝐼𝐼 =  𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇
           (16) 

 
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝐿𝐿𝐿𝐿 =  𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇
           (17) 

 
𝐼𝐼𝑜𝑜𝐼𝐼 =  𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇
           (18) 

 
3. Results and discussion 
 3.1 Building training data 

 The training data was sourced from PlanetScope imagery, which served as the image input 
and reference for generating labels. To produce the labels, several steps were applied, including data 
pre-processing and the Segment Anything Model (SAM). These steps, in more detail, yielded the 
following outputs: 

 
3.1.1 Data pre-processing 
Before pre-processing, the PlanetScope imagery displayed seaweed cultivation areas with 

low color intensity (Figure 7). The seaweed plots appeared dark but blended with the surrounding 
water. In various experiments conducted, the Segment Anything Model (SAM) struggled to 
differentiate seaweed from seawater effectively. The pre-processing stage helped resolve this issue 
by enhancing the contrast of the seaweed cultivation plots, making the boundaries between objects 
clearer. As shown in Figure 7, the pre-processed data reveals that the seaweed plots can now be 
visually separated. Therefore, this step was crucial, as it significantly improved the quality of SAM 
segmentation results for seaweed. 

 
3.1.2 Segment Anything Model (SAM) 
The application of SAM was expected to produce label data quickly and accurately. 

Accurate labels were crucial for the model to learn the structure of objects in the imagery and to 
provide an objective evaluation of the model’s performance. Without accurate labels, the model 
would struggle to identify the location and boundaries of seaweed objects in the images. In a study 
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by Karimi et al. (2020), it was demonstrated that the presence of noisy labels can severely impact the 
performance of DL models. Models trained on datasets with a high degree of label noise tend to 
memorize the training data, rather than learning patterns that can be generalized. As a result, the 
models perform poorly on new, unseen data because they struggle to effectively distinguish between 
correct and incorrect labels. Human annotators often introduce bias or errors during the data labeling 
process, leading to misleading training signals for Deep Learning models. Therefore, in this study, 
SAM was applied to automatically generate labels for seaweed and non-seaweed areas, aiming to 
produce labels with high accuracy and reduce the impact of human-induced label noise. 

 

  
 

Figure 7 PlanetScope imagery in May 1, 2021, before pre-processing and after pre-processing. 
 

The input image for SAM was a preprocessed image. It is important to note that SAM 
outputs are instance segmentation, where each object is distinguished even if it belongs to the same 
class. Therefore, it was necessary to merge objects of the same class and separate those that were not 
needed. This process resulted in two binary classes: seaweed and non-seaweed. These annotated 
results were used as labels for the model’s training and testing process. Visually, the comparison 
between the input image, the SAM results, and the labels or mask to be used can be seen in Figure 
8.  

 
 

 
 
Figure 8 Comparison between the preprocessed image, the SAM results, and the labels or mask on 
the PlanetScope image dated March 22, 2021. 
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3.2 Training model 
The model training process was based on the designed SSUNet architecture. The input data 

required for training had to have a uniform and consistent size. In this study, the image size used was 
128×128 pixels. A total of 405 pairs of images and labels were collected. However, a small amount 
of data for building a DL model could have led to the risk of overfitting. Data augmentation is a 
solution to increase the amount of data by applying transformations to the input data that preserve the 
shape of the objects. Various data augmentation strategies enhance the variability of the data, enabling 
the model to better understand the different variations present in the data. As a result of augmentation, 
the number of data increased to 2,835 pairs of images and labels. 

The model training process required setting hyperparameters in a way that yielded the best 
model. Some of the hyperparameters used in the training process included learning rate, batch size, 
and the number of epochs. These hyperparameters were uniformly set, with the learning rate set to 
0.0001 and adaptively updated during the training process, the batch size set to 32, and the number 
of epochs set to 100. This configuration was the most optimal combination obtained during the model 
training trials. 

 
3.3 Accuracy assessments 
The best-performing model was obtained after several training trials. The model’s 

performance evaluation could be assessed from the values of the evaluation metrics. The application 
of the SSUNet architecture in the model training process resulted in accuracy of 94.71 %, loss of 
13.09 %, precision of 80.93 %, recall of 73.63 %, and IoU of 48.51 % on the training data. For the 
validation data, the results showed accuracy of 93.64 %, loss of 16.75 %, precision of 84.34 %, recall 
of 57.57 %, and IoU of 42.98 %. The comparison of evaluation metric values between the training 
and validation data during the training process can be seen in Figure 9. It was necessary to compare 
the evaluation metric values obtained during the model training process with those from the validation 
process. This comparison was crucial for detecting overfitting or underfitting in the model. The 
performance of evaluation metric values for both training and validation data should have been 
consistent, with no significant disparity between them. If the values were consistent, it indicated that 
the model had learned well and was not significantly overfitting or underfitting. The error for the 
model on the training data reduced, as well as the error on the validation dataset. When a model’s 
performance metrics on both training and validation datasets are similar, it suggests that the model 
generalizes well to new, unseen data (Colliot, 2023). 

Based on the evaluation metrics, the high accuracy on both training and validation data 
indicated that the model accurately classified the majority of seaweed pixels. The lower loss on 
training data compared to validation data suggested effective learning of training patterns. The higher 
precision on validation data implied that the model’s positive pixel predictions were highly accurate, 
with few false positives. Conversely, the lower recall on validation data indicated the model’s reduced 
effectiveness in identifying all positive pixels, leading to many false negatives. The lower IoU on 
validation data highlighted the model’s difficulty in generating seaweed segmentation predictions 
that precisely matched the actual areas, revealing imperfections in the overlap between predictions 
and ground truth, especially on previously unseen data. 
 

3.4 Effectiveness of SSUNet for seaweed mapping 
To further investigate the effectiveness of the SSUNet model for mapping seaweed 

cultivation, the model was applied to previously unseen data. The model was tested on several 
validation datasets to visually assess its ability to accurately predict seaweed cultivation. The spectral 
and spatial modules were designed to guide the model’s focus on the spectral and spatial features 
present in PlanetScope imagery, which is rich in both spectral and spatial information. 
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Figure 9 Comparison graph of evaluation metrics: accuracy, loss, precision, recall, and IoU on 
training and validation data. 
 

The prediction results of the model can be seen in Figure 10. Visually, when comparing the 
image, mask, and prediction, it was evident that the SSUNet model effectively predicted seaweed 
cultivation areas. The segmentation results clearly represented the patterns of the seaweed cultivation 
areas, although some boundaries were still imprecise. This imprecision was due to the model’s 
performance imperfections, resulting in some inaccurate predictions. The red boxes in Figure 10 
highlight the discrepancies between the labels and predictions. The predicted object boundaries still 
exhibited some misclassifications. However, overall, the model accurately identified the features and 
patterns of seaweed. 

Upon closer examination, it is apparent that the dark-toned seaweed cultivation areas in the 
PlanetScope imagery were predicted accurately. This indicates that the seaweed in these areas has 
been densely planted and has grown robustly. However, seaweed cultivation areas with lighter tones 
were not predicted as accurately. This suggests that these areas have not been fully planted, or 
potentially have not been planted at all, leaving only the stakes of the seaweed cultivation framework 
visible. 
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Figure 10 Comparison between image, mask, and prediction. 

 
 

The SSUNet model can be implemented for multitemporal mapping of seaweed farming areas. 
Given that PlanetScope imagery has a daily temporal resolution, it holds significant potential for 
sustainable monitoring of seaweed farming. However, at this stage, the model has only been applied 
to a single scene from PlanetScope imagery, recorded on April 19, 2023. The model application 
results are shown in Figure 11. The model’s prediction results for the image scene were used to 
extract the seaweed farming area. On that particular date, the estimated seaweed farming area was 
383.69 hectares. Meanwhile, the seaweed farming area derived from visual interpretation (ground 
truth) was determined to cover 433 hectares. Comparing the predicted area to the ground truth reveals 
a discrepancy of 49.31 hectares. This indicates that the model’s predictions still experience some 
misclassifications, contributing to the observed difference in area. The model’s performance, which 
has not yet been fully optimized, also plays a role in this outcome. 
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Figure 11 (a) Full scene true color composite PlanetScope image on April 19, 2023, and (b) predicted 
seaweed cultivations. 
 
 

A comparison between the true color composite of PlanetScope imagery (Figure 11a) and the 
predicted seaweed farming areas (Figure 11b) demonstrates that the model effectively predicted the 
abundant seaweed farming plots in the water. However, some areas experienced misclassification, 
such as in the sandbar. Some non-seaweed objects, such as seagrass or coral, were still classified as 
seaweed. This is because seaweed is cultivated on the water’s surface, and in several seaweed farming 
areas, the substrate consists of seagrass or coral. These underlying objects often blend together in the 
imagery, making it difficult to separate them both spectrally and spatially. Consequently, 
distinguishing between seaweed and these other marine features posed a significant challenge for 
accurate classification. 

The complexity of seaweed as an object also presented significant challenges. When visually 
examined in the imagery, seaweed farming plots can be spatially distinguished based on their planting 
patterns (Langford et al., 2021). However, spectrally, seaweed is difficult to differentiate from other 
marine vegetation, such as seagrass and other types of macroalgae. These plants share similar spectral 
signatures due to the presence of chlorophyll and other pigments, with the primary distinction lying 
in the intensity of their reflectance values (Dora et al., 2024). In addition to the complexity of seaweed 
itself, the inherent complexity of PlanetScope imagery as the input data, which exhibits high spectral 
variability, also contributed to the challenges. This spectral diversity can potentially introduce a 
significant amount of noise (Kington & Collison, 2022), which made it difficult for the model to 
accurately detect object boundaries. These complexities in both the object and data significantly 
impacted the model’s ability to perform precise segmentation. Therefore, the model’s performance 
limitations were partly influenced by these factors. 
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The satisfactory performance of the seaweed cultivation prediction model was largely 
attributed to the architecture of SSUNet. The integration of the Spectral-Spatial Attention Module 
(SSAM) in each UNet layer effectively enhanced the representation of spectral information and 
measured the spatial significance of seaweed features at each model layer. Specifically, the Spectral 
Attention Module focused on correlations between adjacent spectral dimensions, leading to improved 
classification outcomes. Meanwhile, the Spatial Attention Module emphasized spatial dependencies 
by assigning attention weights to each pixel, aiding in capturing local spatial patterns and enhancing 
overall classification performance (Wang et al., 2022). Consequently, the sequential mechanism of 
SSAM enabled each layer to adaptively adjust the feature map weights and extract more informative 
features. 

 
3.5 Future research 
The SSUNet model developed for mapping seaweed cultivation still had several limitations, 

including some inaccuracies in segmentation that could be improved. This study recommends 
enhancing the quality of the DL-based seaweed cultivation mapping model through refinement 
techniques, such as post-processing, or training enhancements, like fine-tuning hyperparameters. 
These steps aim to improve the delineation of object boundaries. Additionally, further exploration of 
different types or combinations of attention mechanisms is necessary to produce a more optimal and 
more accurate seaweed cultivation mapping model. 
 This research aims to serve as a reference for the future development of DL-based seaweed 
cultivation mapping methods. Various aspects such as environmental parameters, water quality, and 
oceanographic conditions can be integrated if seaweed cultivation mapping is quickly and easily 
accessible. This integration will enable more complex analyses for monitoring seaweed cultivation. 
In addition, the developed model can be applied to various applications for the advancement of 
seaweed cultivation, such as monitoring seaweed cultivation patterns, extracting the cultivated area 
that can be validated using field data, and estimating seaweed production. Therefore, the models 
produced could be used by various stakeholders, including the government and private sectors. This 
will support the acceleration of seaweed cultivation data production, which will positively impact 
resource sustainability and strengthen food security, particularly in the field of fisheries resources. 
 
4. Conclusions 

In remote sensing imagery, spectral and spatial features can be extracted. PlanetScope 
imagery, with its high spectral and spatial resolution, holds significant potential for use as input data. 
The Spectral-Spatial Attention UNet (SSUNet) architecture was implemented for seaweed cultivation 
segmentation. The addition of the spectral-spatial attention module (SSAM) to the UNet enhanced 
the extraction of seaweed’s spectral and spatial features. The model’s training process was evaluated 
using metrics such as accuracy, loss, precision, recall, and Intersection over Union (IoU). The results 
indicated that the model achieved high accuracy values (94.71 and 93.64 %) and relatively low loss 
values (13.09 and 16.75 %) for the training and validation datasets. These outcomes suggest that the 
model performs consistently, though there is a slight overfitting tendency. The high precision values 
for both datasets (80.93 and 84.34 %) demonstrate that the model can accurately identify positive 
pixels, but the lower recall values (73.63 and 57.57 %) indicate challenges in detecting all positive 
pixels. As a result, the IoU values (48.51 and 42.98 %) are moderate, suggesting that, although the 
model produces correct predictions, there remains room for improvement in the overlap between 
predictions and ground truth. Overall, the evaluation metrics demonstrate that, while the model 
detects most objects, inaccuracies in boundary prediction result in suboptimal segmentation. 
Nevertheless, the model performs well in rapidly and accurately extracting seaweed cultivation areas. 
The developed seaweed cultivation mapping model was applied to one of the image scenes in the 
study area. The prediction results revealed a clear distribution of seaweed cultivation areas, leading 
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to an estimated area of 383.96 hectares. This highlights the significant potential for further seaweed 
farming development. 
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