“wiid4n * 111aT31NT AnzannensTuAanT nuanaaduAadang

Visualization of Spatial/Geographic
Information with Virfual Reality
Modeling Language (VRML)

Report on the World Wide Web at:
http://www-personal.engin.umich.edu/~tnac/viml/GISVisualization/html/reportMaster.html
VRML model is accessible at:
http://www-personal.engin.umich.edu/~tnac/vrml/GISVisualization

omp Campus 98 Wanaal Oas Cost(B)
O-To0l 54
TOG 164 - 22040 02
L2400 - AZEM DT
42604 57 - 4041214

[+ WOlldl nfo é m\:gxp\l:::s::::n' W 08 Wanral 04 Cost
Wges
[+) DashBoard vy

) Button = Fals

_J dashMenu
') Bldg

'i' Navigationinfo
+- ™% Background

[+ ¥ Viewpoint activeview

Naturg! Max » 124283.07
s & ERPYD Wiewy Dt Wb

B 5 1998 Natural Gas Cost ($)

0 800 Welen

Hoight Sole &

Thana Chirapiwat

Urban, Technological, and Environmental Planning
Taubman College of Architecture and Urban Planning
University of Michigan, Ann Arbor

February 25, 2001

120

o a
aiuf 17 DnasAnm 2544

Visualization of Spatial/Geographic Information with Virtual Reality
Modeling Language (VRML)

Background

Geographic Information System (GIS) is a system that enables an integration of a spatial data (maps, drawings) and
databases. The integration of the two types of data sets create relational database. GIS is capable of analyzing the
complex multivariate data sets and visualizing the data in mainly 2D thematic maps. There is a module that can be
added on to add 3D capability. However, it has no effective navigation system allowing users to explore the data
representation. The level of control over visual appearance available in many commercial GIS is rather limited
(Gahegan, 2000:256). Often, it is restricted to small number of predefined spatial primitives with few visual attributes.
Here is where the Virtual Reality Modeling Language (VRML) can be implemented to enhance the visualization of the
GIS analysis. The problem for such application with VRML involves the process of transferring, transforming, and
formatting the data sets so that the final visualization truly represents the integrity of the data.

There have been a number of developments to generate 3D model of geographic data such as terrain model for real time
viewing with some degrees of navigation freedom. Huang and Lin (1999) developed a script, using Avenue Script,
called GeoVR for ArcView to generate VRML model from conventional 2D vector data, ArcView’s shape files, using
an HTML’s Common Gateway Interface (CGI) form as a front-end to receive parameters defined by users. The VRML
model of the geographic information created with this method is still a static model with the degrees of navigation
freedom provided by the browser’s VRML plug-in. Thus, the interactivity in the model, besides the real-time
navigation, does not exist. Similarly, other VRML models of geographic information often lack the abilities to interact
with the model to explore different aspects of the data associated with the geographic entities. For example, the United
State Environmental Protection Agency’s (EPA) Geographic Information Systems and Visualization Center (GISVIS,
http://www.epa.gov/gisvis/index.html) has applied the VRML to visualize a number of their geographic data with static
VRML models. Berry et al (1998) apply 3D virtual reality to visualize realistic visualization of natural environment with
static 3D model with real-time navigation. Their visualization of virtual forest was the implementation of the integration
of GIS and CAD more than the integration of GIS and VR in the sense that the process was in the CAD modeling of the
GIS data and using VRML as a mere viewing tool. The interface of their model was limited to navigation in and around
the model. This paper explores the integration of the GIS data within the VRML model that can be explored
interactively as the user navigates through the virtual environment.

The basic implementations of the 3D virtual environment using VRML standard have been largely on the simulation
and modeling of places, real and virtual. VRML world is a dynamic and interactive 3D environment that has not been
fully utilized in interactive visualization of geographic information. Objects in the VRML world can be self-activated
animated or moved, rotated by user input. Moreover, complex behavior can be assigned to objects so that it reacts to
user input. These capabilities provide possibility to integrate database information to the VRML world so that the data
can be visualized in 3D environment. The ability to visualize complex data in 3D can greatly help us to analyze and
understand the underlying features of the data.

Objectives

The objectives for this study are:

* To study the requirements and advances in interactive visualization of geographic information in 3D virtual
environment.

¢ To investigate properties of VRML geometry and interactivity functions.

¢ To identify an effective way to visualize the integrated database resulting from the GIS spatial analysis with
VRML. This includes ways of the transformation and conversion of file formats from different components to the
final VRML programming.

* To prepare a VRML prototype that will allow future modifications and customization of a case study on energy
consumption data for the University of Michigan's North Campus buildings.

121

“w14 “ 2118713107 AnsdoinenTINANaRf suAneduAalang

3D Visualization Techniques for Geographic Information

In general, GIS produces visualization graphics in map format. These graphics can be categorized broadly as
exploratory graphics, design graphics, reference graphics, and presentation graphics. Exploratory graphics portray the
information generated from numerical modeling, especially where there is need to simplify for less ambiguity or more
convincing. Design graphics are graphics used in the thinking process. They permit preliminary testing and comparison
of solutions to a set of problems. Reference graphics are graphics prepared for a variety of purposes which can be
extracted and put to new uses. Presentation graphics may be similar to that of reference graphics, but are usually
simplified graphics designed to communicate specific concepts in a particular context (Turk, 1994: 28-29).

The visualization of geographic information is the integration of Visualization in Science Computing (VisSC) principles
and cartographic representation methods (MacEachren, 1994). MacEachren et al (1994) introduces four dimensions of
variability in typology of visualization techniques. The first is purpose—how the visualization tools are used: data
exploration and confirmation (prompt for visual thinking) to the synthesis and presentation (vehicles for
communication). Second dimension is the /evels of interactivity to the audience. The third dimension is the /evels of
abstraction in the visualization. This ranges from the highly symbolic to the highly detailed and realistic. Abstract
representations may not be accessible to untrained users, thus it is more private in nature. The fourth, and final,
dimension is the aspect of the phenomenon to information process. This 4-dimension aspect of visualization can be
illustrated in 3-dimension space in Figure 1 below.

Interaction

Lo

=

Public Au dien ce Private

Figure 1. Use of geographic information visualization in 3D space of (1) audience correlating with the levels of abstraction, (2) levels
of interactivity, and (3) data relations to the aspect of phenomena. (Source: adapted from MacEachren, 1998)

This study of the visualization of geographic and spatial information is expected to benefit the exploratory aspect of data
visual analysis. The prototype would facilitate the following analyses:

¢ Phenomena change. 3D visualization can depict phenomena change over some specific of time period, or the
rate of change of a phenomenon or one (or more) of its attributes.

¢ Visualizations of relationships between phenomena, such as spatial distribution and pattern of one of the
attributes, relationships across various attributes.

The 3D environment allows us to examine the multivariate data with high dimension. For example, the prototype from
the case study can display at least five dimensions of the data. The first two dimensions represent the geographical
locations and the spatial extends of the objects of study. The third dimension, height, can show the value of one of the
attributes of the spatial objects. The fourth dimension, color, represents another attribute value. The fifth dimension is
the temporal dimension enabled by interactive menu to display data at different times. The high dimensions of the data
visualization enable the visual analysis of the relationship among various attributes and among objects.

122

o a
afuh 17 Onnsdnmn 2544

Model for the Data Integration

Digital Maps Attribute Data

by CAD Sysiem by Database
) . System

(Geographic Information System

Spatial Entities
linked with = Spatial Analysis
attribute data

3D Visualization

Virtual Environments
(Background, Lightes,
Navigation)

[3

p{ 3D Geometry Attribute Data

Behaviors &
[nteractivities

Figure 2. Model for the data Integration.

The implementation of VRML to visualize geographic information can be structured to integrate the four systems—
CAD, database, GIS, and VRML (see Figure 2). The model starts with 2 types of data from different systems. CAD
system provides spatial and geometric information in the form of digital map and prototype of 3D spatial objects. The
prototype of 3D spatial objects was prepared base on the 2D spatial and geometric properties of the objects with a single
unit, 1 meter, of the third dimension. This is to set the third dimension of the spatial objects ready to correspond to any
value of the non-spatial attributes from the database system and any modifier. The 2D properties of the spatial objects
are the input to the GIS. They are, then, linked with non-spatial attributes for spatial analysis. Spatial queries can be
performed to filter only interested attributes to be further analyzed and visualized.

The following sections describe the elements of the four major modules of the model. The focus of this study is the
implementation in VRML programming. Data from the other three modules—CAD, database, and GIS—are integrated
in a number of prototype files (PROTOs) and partially embedded in the main VRML file.

The Data

The data sets, both digital maps and the database, for the input to GIS are often prepared with external tools. Computer
Aided Drafting and Design (CAD) is usually the tool to create precise maps containing the spatial obj ects—points, lines,
and polygons (areas). CAD allows the spatial objects to be organized in many ways using layers, colors, line attributes,
etc. Database or spreadsheet program organizes the data pertaining to the spatial entities.

There are two types of data sets involved in the geographic information analysis—digital maps and attributes data. Both
types of data are best to be created and prepared with external programs. GIS has very limited tools and capabilities to
create and to modify either data types. Depending on the purposes of the project, the data need to be defined to serve the
purposes of the analysis. The first data type is the digital map. It is necessary that the spatial entities are created in their

123

“ YA " 911819 1IN7 AtzA T RENTTNANERT nuanenduAalang

real scale. This means the dimensions to the map elements must have the correct sizes that can be projected on to the
earth surface. However, the level of detail may vary depending on the unit of the spatial analysis. The purposes of the
maps need to be defined at the early stage in order to specify the level of detail of the digital map needed.

The digital map of the case study provided by the Facility Planning and Design Department of the University of
Michigan. It was prepared with Microstation®, an Intergraph’s CAD system. The data was converted into DXF standard
vector format. The DXEF file, then, was imported into a 3D CAD program, FormeZ®, by Autodessys, Inc., to prepare a
uniform-height 3D model. The model was optimized for the VRML application by simplification of the geometries.
Curves and complex polylines are straightened. This is to reduce the number of polygons to be rendered in real-time in
VRML view.

The uniform-height 3D model was built on a flat ground plane. The reason for this is to restrict the reference of the three
dimensional data visualization at the same datum. The actual ground of the University of Michigan North Campus is a
non-uniform terrain. However, data visualization of the energy consumption on the terrain surface can easily mislead the
users and make it difficult to visually compare the data value because the terrain shifts the bases of the buildings to
different elevations. Therefore, the terrain of the ground for the model was eliminated to assist the visual exploratory
analysis of the data.

+ campuses.fma - | [Model] o [=] 3

frame 1-1(A:0n) "l]?ﬁ - _.J
J i

+ campuses.fmaz - 1 [Model]

=

frame 1-1(Axon)

U

Figure 4. 3D model prepared in FormeZ® with a uniform height.

The 3D uniform-height models of the buildings were named with the Bldgno. The names assigned are important as to be
the identifier for the buildings that match the attributes data. When the CAD model was exported into a VRML format,
these building names are used in the instancing of the building in VRML programming. The VRML instances can
receive events and allow the events to modify they properties such as colors, scale, rotation, and translation.

The second data type is database. There often are multiple data sets for the spatial entities. The attribute data sets can
basically be delimited text file. The database in delimited text format is highly transportable. It can be read by most of

124

atfuf 17 DnarAnun 2544

the spreadsheet, database, and statistical applications. The multiple sets of data need to have proper index in order to be
linked in a relational data structure. The GIS imports the data sets and links them with the spatial entities. Each data set
can be represented as a layer in the map visualization. GIS combines various layers of information and database in the
analysis. Thus, multidimensional analysis can be accomplished.

The database of the case study was obtained as several separate data sets. They are originally tab delimited data files.
The files were imported into the GIS to be linked to the spatial objects by the Bldgno. The combined data was sorted
and analyzed. Data of the North Campus buildings (Campus Code=500) was queried and filtered out to a new GIS layer.
The layer was converted to an ArcView shape file which contain the geometry and attributes table. The table was, then,
exported into a delimited text. This is to prepare a data text for VRML programming.

GIS Database

GIS provides crucial tools for spatial analysis. A large number of records in various data sets can be linked in a
relational structure. Spatial queries and measurements can be performed. In the study, the digital map of the City of Ann
Arbor and the University of Michigan campuses were imported into the GIS. They were georeferenced to be overlaid
properly. The campuses were shown as in distinguish colored areas—Central, Medical, North, Athletic, and others.

Campuses’ buildings were split into separate layers, thus, later, only the North campus will be exported for VRML
application.

[Vet
" Obigarsn
=3
(. 5 &
[
Y
Y
Y
Y
Y
% ' > N
¥ ”"’; 2“—:*
/(;)5 A

Figure 5. GIS overlays of city map and campus map. Features such as streets, rallway, river, bndges are shown with the campus
grounds and buildings.

The building digital map contains basic index information, Bldgno. The attribute data sets that were imported into the
GIS project file also contain Bldgno. Each attribute value from the data sets can be linked to a proper building. Three
attributes of the buildings in North Campus—energy costs (electricity, water, and natural gas from 1991 to 1998)—were
selected for this study. A query to filter only buildings with Campuscode = 500 (North Campus) was performed. The
result of the query was converted into a separate theme (layer). This new theme contains the combined spatial objects
(buildings) and their attributes. GIS can perform further complex queries with mathematical and Boolean operations
such as to find buildings that have less electricity costs per square foot and natural gas costs per square foot in 1998 than
in 1997. However, for the purpose of the development of VRML application in this study the raw data were needed to

create an interactive visualization for data exploration that allows users to see the actual data values in a variety of ways
with less artifacts.

125

“ w149 “ 017819997079 AnzantineniTuAanT suninendudalang

Aftribaton of Diigpoby. st
HWIWUWSFR W00 S0 HORTHWOOD ¥ APTS 2T am om, (L o) Ll H am

ELECTHIA(HBI(BWTI‘HMM wmm:mmmﬂl HORR2200 00 HMMS BPDER) TE | !llmﬁ WAST 20 114ESAI0C
\(RCIHTSILE[WOUSE | z's.umm SO0 VERA BAITS | LEE HOUSE !

T HATCHER W NORTH GRADI 2550421900 0 HATCHER HNORTH GRADU 54212000 S/646716) 40113648 SI020000] 44049 3% SM400C
Hi'lﬂ‘-iln FOUTH ERKN.II *ms?‘sun wa HﬂYMHH!ﬂLIIHm,‘ ! L
| PRESIDENTS RESIDENCE | 165221000 100 PRESOENTS AESIDENCE | 4152000 IWSBE4) 206112) 7ee000] N6 BNOC
MJWHOMEHM%\?&IW W00 FACKMAM MORACE W GRADN 7330000 SHV06 &0 THONO0 WSN000 RSISED 100 N(
| COOK JOMM P LW QUAD | SE421800 300 CODLJOHN FLAWDUAD | MSEO00 4778600 573N THAC0OM| 28RO TeE000C
| ORIGIMAL Law OUAD | 1250000000 100 QRIGINAL Latw OLAD !

W 06 R WERE M I0MNC

2 ‘1!3?!3: nen s umsm: M A? A

TrACH PRIES TOM OBEAT T azitn oo~ 10 TISCH FRESTON ROBEAT 1]

| GOLF COURSE CARETAKER. 71284000 A0 GOLF COURSE CARETAKER _ i

GOLF COURSE CARE LanER nmm A0 GOUF COURSE CARET& ER i

CANGELL BAMES BHAL m.x*sm 00 ANGELL JAMES B HALL WSS DD -m‘uw NSRS PR
.u SCENCE A0 N UTERATURE SCENCE AND 7777000 i W NINSTS Mar
ANGKI.I.M'SIHALI. "NNHW 100 ANGELL MMESBHALL ZWESMI0 1WTI9 M M08 05 mw NS TTENE L
mn[ummmlmm STose 0 M ANSELL HALL ADDITIONHA! WTTRIZ2ON 26STI2F ARTEI TR 10600 TSI AL
_ MADISOM BUILDING. 1 mm VS MADFSON BURLDNG L AR NS M A amwmb XanRn Feilille
_ PERRY BUILDNG "nmm 00 FERAY BUILCING. . WM e IRBR 4000 15905 Y5EBE0 [
LﬂunWHLEbALRtSLIJ sETR W0 COOF Wi b LEGAL RESEAT WST200 00 (50005 20 Fab hod ol S0, INSM A arree

" FLEMING ACMINISTRATION. 107537500 1) FLEMING ADMISTRATION. TSHDO00N SOTA00) S7S0400. TIOOOOG) BN IO 7eER00(
' 1 i | meam 0% A WON sKe ol
TAFPRM HALL L AnImsm 00 TAPFAN MALL i STITN0 00 ml‘l 210 “‘r‘”w. [3F:0ek 4 THEADC

Figure 6. Linked data for the entire University of Michigan campuses—buildings’ identification variables (Bldgno, Bldgname,
Bldgft3, Campuscode) and attribute data of the energy consumption (89econsump, 89ecost, ..., 98ngconsump, 98ngcost).

= E3

2 Attributes of Nbidgs.shp

LURIE ANN AND ROBERT H

nco | BAGHOUD FRANCOIS AV

UILDING ;
. U'LDINE el e a—————

Bg

38

ol
ELE
3B 403)5 emonal | COOLEY MORT
323 a3 | MICH MEMORIAL PHOENE | BUILDING
E | FORD NUCLEAR REACTOR | BUILDING
W6, 40613 Adv. Tech Lab | ADVANCED TECHNOLOGY L, BUILDING
S06| 4071 IHA Psychologl | BROWN G G LABORATORY | NG
E14] 408]

I MLE L
1 _ __|
T T E I EWRE S

b T 500
M3 4 500
wl 500
5111 4 500

Figure 7. Linked data of North Campus buildings.

The data was, then, exported into a delimited text. The data was transposed in a spreadsheet application to rearrange the
fields and records. The data was arranged so that a building and its attributes were in a column format. This was to
prepare an attributes to be an array indexed by Bldgno. Maximums and minimums of the energy types were calculated
and arranged as an array indexed by the year (1991 to 1998). A comma delimited text was created from the prepared
table.

126

Ui 17 Un1sdnw 2544

R B TR R Y O < Y L N TR T R R R N T - T O T - O |

| Bidgno 194 395 396 97 400 02 403 0 406 20 424 27 [a2 a3

Bidgname LURIE ANF BAGNOUL INTEGRA™ LURIE ROE LAY WALT TECH INF1 COOLEY h MICH MET ADVANCE BROWN G ENVIRONI NAVAL AF COMPUTI ENGINEEF NORTH C. INDUSTRL ART & AR IST SOUTH

Brdgit3 355150 12102940 13059483 1708686 6570678 1069625 5661654 5490309 3878325 33561453 163860 3317745 4079276 90BATE 11363535 I7488D4 28795075 6T4430

9te 0 0 0 0 6209583 225036 5230368 1283184 6857499 4706421 1132811 131292 3975972 9876635 7305984 413616 302857 261996

2e 0 593173 o 0 B93I%ETT 204708 BD1T7TE 1347696 779305 4436558 1082298 1302672 4116336 1154536 741888 536928 294551 283676

5 |33 0 9TEIT2 0 0 8263639 202104 588168 1291752 7696282 6169415 1244251 1403016 3970848 106275.1 7467587 540288 3040128 246372

e 0 2088979 422788 487 B1G1945 18144 5902848 1208832 7167284 5202842 1252237 1410452 3861312 1007174 738385 432768 2904922 223778

95e 0 185867.2 2185236 54992 6977608 16592 548364 114672 7016448 5A5IB5B 1312715 143504 306048 6117702 TOBBET2 43424 28EEB44 15704

96e 330696 2155392 2157208 6299048 BETSTEE 20432 552608 117024 6488064 5417314 1303927 140440 333928 9613872 758784 49728 3121152 19736

97e 1346942 2176128 503221 108032 $999248 19776 677695 113520 654336 5162205 1242504 129776 276528 9121056 7523328 49064 2904832 17824

98e 1002888 2444544 5595711 1074099 118080 18976 689376 119464 6746112 5065392 1213216 1351003 135376 9291968 T43424 54464 2764544 19704

9w 0 0 0 0 813096 133544 708196 2124796 93513 3152239 1727426 3223683 710395 619954 9450 135169 122177 162554

2w 0 0 0 0 78938 312155 424805 185447 98765 4015787 2831024 3824519 785195 661253 6748 14793 178246 443493

0 3142158 o o 142673 672123 TH16.33 2138786 110287 S5J187.24 3961819 4277002 21632397 54237 96813 140638 1651467 536203

0 5535623 0 0 199668 322508 6757.32 2098838 1137.92 6508055 3610803 3972081 201945 522298 960616 164479 1691085 320696

1] 5249 o 0 1581962 378499 130886 2430583 121231 557883 4761992 4250214 2274605 4TIIET 94581 271707 19309117 29609

8664 7086835 o 0 2207318 T205.84 148296 2788407 178455 5403534 4235938 4227487 2492844 55231 1070192 411662 2228246 416007

10125 5685235 1344664 1807.1 1492682 146073 538135 2818611 148175 6567514 57928.32 23817.35 2206561 489885 114273 210093 1805325 604146

27101 5353087 1419685 242783 5248.32 9950.65 44781 2204642 1475508 5563524 458811 BOE1.11 183694 60774 114998 227961 1593386 1312758

0 0 0 0 2062616 1247754 2432838 2933085 311175 B9846.13 1265505 9730.18 7674204 178667 20670.15 1788773 102611 33M

0 0 0 0 26400.17 B407.25 2044223 2464842 TITETO TE4913 1617273 86472 7090624 1532277 2296095 1502935 6227838 166.07

0 2688607 1] 0 2696142 SEAT 52 2027444 2444607 735265 781236 1651761 2163338 7935177 2810286 J6E14.28 149064 8178357 24866

o 37TETLTE 1] 0 2809467 1348085 193236 1945889 1002892 9865868 17074.37 2028632 91664.2 4053395 4076406 1964513 1224585 40332

0 2796191 0 0 2118184 776376 1337179 23355 625505 6976373 1290973 2253635 6695009 3036866 2954931 1424111 9538616 44111

0 4050486 5937022 1337748 0089.18 1163948 2510722 3025851 10597.14 965745 1835858 03259713 821138 4495278 4833215 1845032 1397444 830653

0 4821515 1134458 0 J1658.2 1513714 2382902 J5968 1117453 104569 192924 3713675 9177207 4993338 5198145 21931668 1405777 B56.53

21 0 4024966 9159679 1894656 2626699 112069 2673918 3103632 934128 891076 1572238 3241585 7104284 4027642 4321766 1892436 106651 469.87
28 eMan 9648072 9794333 9089606 9138394 B208416 G573968 G143904 B2343I6
23 wMax SEB6532 5308184 7029272 6108695 5986627 7TOBGBSS 7495507 1178973
30 ngMax 1110181 1120815 1212963 1242631 OBJ8G.16 1397444 1454043 1176808

Figure 8. Attribute data of the energy consumption of the North Campus buildings.

The 3D uniform-height model and the comma delimited data were the two essential data for the development of the
VRML visualization. Further interactive components were to be built within the programming of the VRML model.

VRML Standard

VRML, an acronym for the Virtual Reality Modeling Language, was conceived in the spring of 1994 at the first World
Wide Web conference, held in Geneva. As a three-dimensional graphical visualization tool, VRML was intended to
become the standard language for interactive simulations within the World Wide Web and was rapidly adopted by the
wider Internet community. A subset of the Open Inventor ASCII file format was used to form the basis of the language,
and the development of VRML was speeded up considerably by the contribution of a VRML file parser into the public
domain by the company Silicon Graphics. This and further development took place over the Internet via an Internet
mailing list and later through a number of news-groups. Web3d consortium was founded in 1999 as the successor of the
original VRML Consortium, founded in 1997.

The Virtual Reality Modeling Language (VRML) is a “file format for describing interactive 3D objects and worlds.
VRML is designed to be used on the Internet, intranets, and local client systems. VRML is also intended to be a
universal interchange format for integrated 3D graphics and multimedia” (www.web3d.org). A VRML document takes
the form of a human-readable text file describing a three-dimensional scene. It is capable of representing static and
animated dynamic 3D and multimedia objects with hyperlinks to other media such as text, sounds, movies, and images.
This text file comprises in effect a list of programming syntax which tell the computer to place objects, of given sizes
and colors, at specific locations within a virtual world. Simple 2D and 3D objects can be constructed out of what are
referred to as primitives—simple, pre-defined primitive geometric shapes, for example cubes and spheres. More
complex objects, for example curved surfaces of landscape and non-rectilinear buildings, that cannot be adequately
modeled using simple primitives can be referred to as a face or polygon. Most landscapes and free-form objects, given
their near infinite complexity, require many thousands of individual faces, or polygons. This results in much larger text
files, thus, slower real-time navigation. Other parts of the virtual environment, such as lights, backgrounds, navigation
speed, can also be defined within the same file. A VRML file can be distributed over the Internet and parsed by a
browser program which sensually renders the document into an interactive form. All browsing is done on the client
machine resulting in low bandwidth requirements and hardware independent distribution. VRML browser is a
presentation application that accepts user input through real-time responsive user interface that allows users to
manipulation of objects and navigation using an input device. The three main components of the browser are: Parser,
Scene Graph, and Audio/Visual Presentation (see Figure 2). The Parser component reads the VRML file and creates the
Scene Graph. The Scene Graph component consists of the Transformation Hierarchy of nodes and the Route Graph. The
Scene Graph also includes the Execution Engine that processes events, reads and edits the Route Graph, and makes
changes to the Transform Hierarchy of nodes. User input generally affects sensors and navigation, and thus is wired to
the Route Graph component, defined by sensors, and the Audio/Visual Presentation component. The Audio/Visual

127

“whAn * 0178139937017 AndoTRenstuAanf suaAnenduAalang

Presentation component performs the graphics and audio rendering of the Transform Hierarchy that feeds back to the
user (www.web3d.org).

VRML file input
1 1
PR 3
VRML
Browser we-Pusar

Built-in

A

3D Virtual

Tnlnsﬂ:lri'r'mtlc:nnE""'rm:"mm"t

Hierarchy

Execution
Engine

Yy

Audio/Visual
Presentation

J

user

Figure 9. Conceptual of VRML browser (source: adapted from www.web3d.org).

Scene Graph Structure

A typical VRML file consists of the header, the scene graph, and event routing. The contents of this file are processed
for presentation and interaction by a program known as a browser. The scene graph contains nodes which describe
objects and their properties, as well as the environment such as lights, predefined viewpoints. It contains hierarchically
grouped geometry to provide an audio-visual representation of objects, as well as nodes that participate in the event
generation and routing mechanism.

The header is the identifier for a VRML browser to recognize the file. The standard VRML 97 header is
#VRML V2.0 utf8

“utf8” is the encoding type. The header can have optional comments following the encoding type. It has to end with line
terminator, either a linefeed or a carriage-return character.

Following the header are a number of nodes that make up a scene graph. The order of nodes within the scene graph is
critical, as changes in position or orientation all subsequent nodes. Nodes represent the building blocks of VRML and
describe shapes, lights, cameras, position and orientation (Gillings and Goodrick, 1996). Standard unit in VRML is
meter. The coordinate system is a screen base which has x as the horizontal axis, y as the vertical axis, and z as the
perpendicular axis to the screen.

A tree-like structure can be created using separator nodes which allows parts of the scene graph to be functionally
independent and isolated from subsequent nodes. Specific states, for example color, will then be saved before entering
the separator to make specific state changes, and restored upon leaving. All of the objects need not necessarily be
defined within the one file. Instances of objects on the same server or elsewhere on the Internet may be included within
the file. Instancing using DEF statement is used to define objects and USE to subsequently re-use the object, thus
allowing some degree of efficient, modular programming. The use of instancing, DEF and USE, optimizes the memory
used. When the parser read the nodes from the VRML text file, it puts each node in a memory location and associates it

128

o ol
aiui 17 Un1dnwn 2544

with that memory location whenever it uses that node during rendering. So, whenever the USE is encountered, the
computer does not put another copy in memory, but instead keeps a pointer to the original. Therefore, it save time in
typing codes, network download time, browser loading time, computer memory usage, and rendering time (Marrin and
Campbell, 1997).

VRML9? Scene Graph

Light Group
Node Node

Transform Shape
Node £ Node

Shape Transform Shape
Node Node Node

Sensor
Node

Figure 10. Tree structure of scene graph.

Many CAD applications are capable of translating the layers or grouping of the models into proper hierarchical structure
and instances in the VRML scene graph. The simple structure of VRML makes the production of macro-language
routines for the export of models from CAD formats to VRML relatively straightforward. Routines are already available
for packages such as Autodesk's 3-D Studio, formeZ®. CAD programs also provide the ability to fine-tune scenes;
surfaces may be smoothed, component polygon counts reduced for greater speed of rendering, and cameras can be
added to provide predefined viewpoints. In addition, the GIS, such as Arc/Info and ArcView, have conversion utilities
that can convert GIS layers or themes to VRML. There are also various stand-alone tools for the conversion of the
popular AutoCad data exchange format (DXF) into VRML, making the conversion of existing 3-dimensional CAD
drawings relatively straightforward (Gillings and Goodrick, 1996). In this study, the 3D uniform-height models created
in formeZ® were named and organized hierarchically with layers in the same fashion required in VRML scene graph.

Although the VRML standard has been released over 3 years, different VRML browsers and CAD modeling programs
may use quite different interpretations of the VRML standards to implement very different features. Despite the
presence of complex modeling programs to assist in the production of VRML documents, it is often necessary to
manually edit the exported VRML code to be able to tweak files to satisfy different browsers and to use capabilities
provided in the VRML specification, such as animation with interpolators and behavioral control with sensors.

There are as many as 54 VRML nodes plus instancing, routing and prototype/external prototype statements. The VRML
nodes can be classified into 5 major types—geometry and appearances, scene environment components, groupings,
behaviors, and miscellaneous nodes. Geometry and appearances define objects in the scene and their appearances.
Digital image and movie can be mapped onto the object’s surfaces (polygons). Scene environment components
comprise lights, viewpoints, navigation, background, fog, and sounds. Light nodes define 3 different lighting models to
light up the objects’ surfaces. Grouping nodes are used to arrange the hierarchical structure of the scene graph. Behavior
nodes include sensors, interpolators, and script nodes. Miscellaneous nodes are special nodes which may not visually
affect the scene graph. For example, the WorldInfo node contains strings of title and text information about the file,
PROTO defines customized dynamic node which is not displayed until the node is called in the scene graph.

129

“WiAT * 919815319077 Az RunTTNANART M AnedaRal g

Table 1. Node types

Geometry & Scene Grouping Behaviors Miscellaneous
Appearances Environment | Nodes and

Components Statements
Appearance AudioClip Anchor ColorInterpolator DEF
Box Background Billboard Coordinatelnterpolator EXTERNPROTO
Color DirectionalLight Collision CylinderSensor PROTO
Cone Fog Group Normallntrepolator ROUTE
Coordinate NavigationInfo Inline OrientationInterpolator USE
Cylinder PointLight LOD PlaneSensor WorldInfo
ElevationGrid Sound Switch PositionInterpolator
Extrusion SpotLight Transform ProximitySensor
FontStyle Viewpoint ScalarInterpolator
IndexedFaceSet Script
IndexedLineSet SphereSensor
ImageTexture TimeSensor
Material TouchSensor
MovieTexture VisibilitySensor
Normal
PixelTexture
PointSet
Shape
Sphere
Text
TextureCoordinate
TextureTransform

A node contains a list of fields which hold values that define parameters for its properties and functions. A node
specification is defined with the following syntax:

NodeName {

} class type name [initial value]

le.

Viewpoint {
eventIn SFBoo]1 set_bind
exposedField SFFloat fieldofview 0.785398
exposedField SFBoo] jump TRUE
exposedField SFRotation orientation 0010
exposedField SFvec3f position 00 10
field SFString description ket
eventout SFTime bindTime
eventout SFBool isBound

}

The texts in bold, node name and field names, are the part to be typed in the VRML file. If a field is not specified, the
initial value will be used. The events, eventIn and eventOut, are the functions of the node that allow values to be pass
from and to other nodes via ROUTE statement. eventin defines a property of the node that can receive a new value
passed from another node. eventOut send a value out from the node. The eventOut functions as soon as the node is
loaded by the browser. These properties and functions of the VRML nodes allow great flexibility for interactivity.

Interactivity in VRML scenegraph

Interaction allows user to control behaviors of the objects while exploring the scene. User can touch an object to start
moving the object or a group of objects, to change light intensity, or to change the object’s appearance. Interactivity in
VRML (version 2 or 97) is executed by passing a series of properties around to the various objects in the scene graph.
When one node wants to pass some information to another node, it creates an event. An event is “something between a
function call and an assignment in a programming language. An event contains two pieces of information—the data and
a timestamp. A timestamp is when the event was originally generated. In order to maintain a coherent scene, the order of

130

o -l
afuf 17 On1sdnw 2544

execution is important. The sequences are facilitated by the timestamps of events. The timestamp is the browser’s
internal representation of when the event occurred so that it can maintain the correct sequence (Roehl, et al., 1997).

VRML does not contain a function call mechanism for passing information; instead, an explicit connection between two
fields of the nodes is created. Table 2 shows accessibility of the node’s properties (class specifiers). A class specifier
contains a value. This value has a fixed field type (type specifier), i.e. SFBool, SFVec3f, SFRotation, etc. The value
passed from and to node’s property is required to have a matching field type. Either a ROUTE statement or a direct
access can execute the value passed from a node to another node with a function in a Script node.

Table 2. VRML class specifiers and access types

Class Specifier | Access Available to other nodes

field No external access
eventin Write only
eventOut Read only
exposedField Read and write

Source: adapted from Roehl et al., 1997.

Most, but not all, event/ns correspond to an exposedField in the node. Fore example, the Transform node has
set_translation event/n corresponding to translation field which is an SFVec3f type. An exposedField class can be
set to a particular value or changed when its node receives a corresponding event/n. But, a field class is not exposed. It
can be set to a particular value in the file format, but cannot be changed on-the-fly by an event. Most nodes that have an
eventln corresponding to a field also have an eventOut corresponding to that same field. For example, the Transform
node, in addition to a set_translation event/n, also has a translation_changed eventOut. This event is sent
whenever the set_translation event/n is received. This allows the chaining of events through many nodes.

Figure 11 illustrates an example of event routings from a click of the mouse on TouchSensor node (typically a sensor is
nested with a geometry as children of a grouping node) to both startTime of a TimeSensor and a Script. The eventOut
from the TouchSensor activates the TimeSensor and toggle a SFBool field, toggle_changed to TRUE or FALSE. The
SFBool value of the toggle_changed is then sent to toggle enabled field of the TimeSensor to activate or deactivate it.
This TimeSensor, then, can be used to interact with an interpolator to animate an object or a group of objects.

Mouse g SFTime

Click

SFBaol

Figure 11. Example of event routing.

In addition to passing value from an eventOut of a node to and eventln of another node to change the value of
corresponding exposedField, the exposedField can be instantaneously changed by the direct access from a function in a
script node. Script node allows arbitrary, author-defined fields and events, and the event processing. VRML supports
several programming languages for writing scripts, including the popular Java language, javascript, and VRMLscript.
The script is a powerful and flexible way to create interactivity and behaviors for VRML objects. An event received by
a Script node causes the execution of a script function which has the ability to send events through the normal event-
routing mechanism, or bypass this mechanism and send events directly to any node to which the Script node has a
reference. Scripts can also dynamically add or delete routes and thereby change the event-routing topology (Carey and
Bell, 1997).

131

“ WA “ 1178119 1NT AnsanIRansINAan T uaneduAalang

Prototype: PROTO

“The PROTO statement defines a new node type in terms of already defined (built-in or prototyped) node types. Once
defined, prototyped node types may be instantiated in the scene graph exactly like the built-in node types”
(www.web3d.org). PROTO statement allows customized node to be defined. This customized node is a prototype. A
prototype is a combination of standard VRML nodes. Thus, a prototype can be a complex set of geometries,
appearances with textures, and behaviors. Once declared, a prototype can be used like any of the standard VRML nodes
in the scene graph. Class and type specifiers can be assigned to a prototype with arbitrary names. Prototype need not be
in the same VRML file. It can be referred externally using EXTERNPROTO statement.

Prototype is useful for creating parts libraries. Libraries become sets of standard parts that can be reused through many
different scenes over and over again. Moreover, the properties of the parts can be modifiable when the class specifiers of
the prototype are exposedFields. In this study, prototypes were used extensively for parts of the interactive menu items
and the library of building geometries database. This allows the libraries to be updated externally with convenience. In
addition, the properties of the parts, such as appearances and position, used in the final VRML scene graph can be
articulated differently each time they are used.

Case Study: VRML Components

There are actually many ways to implement the VRML visualization of such data. One technique is to create several
versions of the 3D models that represent the values of the energy cost of all the years. With many predefined heights,
VRML scene graph can call in a proper version of the 3D model to be visible when a menu is selected. This technique
can be accomplished with Anchor node that links to external models or with Switch node with external model files are
linked (inlined) to the scene graph. However, the models are static with predefined properties. This makes the updating
of the building geometries or the energy data become a tedious task because all models have to be update properly.
Moreover, the interactivity is rather limited. For example, it would be difficult to implement the sequential animation of
the height values through all the years.

Another possibility of implementing VRML for this type of visualization is to build prototype to contain all building’s
energy variables. This prototype has an exposed children field to accept the geometry of a building specified at the time
programmed in the scene graph. With this prototype, author or programmer needs to input the data—building geometry
and energy data—at the time the scene graph file is created. This means a building in the scene graph has all the data
attributes built-in the node. Any attribute can be accessed and passed to script’s functions for interactivities. However,
the building geometries need to be maintained in separate files, each file for a building. Then, a building file is inlined
into the prototype’s children field. New building geometries can be added to the library of files; and the existing file can
be modified individually. This is very convenient to maintain the building geometries data. The problem for this
technique is that it is a tedious task to manually input in a large number of energy data values into each building code.

The method implemented in this study, the visualization the energy consumption of the University of Michigan North
Campus buildings with VRML, was to create stand-alone interactive VRML with external prototypes and external static
models of the context. The structure of this visualization was modeled with three separate sets of VRML files—
prototypes, models of the contextual environments, and the main VRML scene graph. They were structured to provide
flexibility in updating the databases, either the building geometries or the energy data. The components of this VRML
implementation can be illustrated in Figure 12 below. Figure 12 shows the linkages of external prototypes and external
VRML models to the main scene graph. In addition, The main VRML scene graph shows its subcomponents and their
events routing. The energy consumption database was embedded inside a Script in form of arrays. The data values in
each array were indexed by the building numbers. The comma delimited text output of the energy consumption data
from GIS was simply cut and pasted into the arrays in the Script. Therefore, these arrays of data in the Script can be
easily updated and modified.

132

|
atfuf 17 Un1sAnmn 2544

Sensors
"¢ TouchSensor
C PlanaSensor ground wrl
< TimeSansor
@ ProximitySensor
% Collision
] Navigation ‘ l Viewpuinlsl Context ¢
PROIO0s |Background| | Lights I Lbeuid ‘M
Building . -
Prnrn%:e] Buildings o
Pl % 00D0000dooooood
Dashboard Dashboard

Protot
{PDRETE.;““ me | Year | Text |
= | Text2 I

i [
e LA M]
ity S e

Anim By.t'r?n . | Textb i
Fo
Scale Slider
| Anim Slider e
=T Uy Scripts
[T H

butten A menu slider B
Seript Script Seript Seript Seript

S
-

Figure 12. VRML components in the visualization of energy consumption case study

Prototypes

There are four prototypes created for the interactive visualization—buildings, dashboard, button, and menu prototypes.
They provide a set of library database of both geometries and functionalities. The buildings prototype is a database of all
buildings’ geometries which can be called to the scene graph one at a time. The building called from this prototype has a
built-in TouchSensor to send and receive events with other components in the scene graph. The dashboard prototype is
mainly a set of functions that update the positions and orientations of its children to be visible at a relative position to
the viewer at all time. This prototype accepts any VRML nodes as children when specified in the main scene graph file.
The button and menu prototypes store geometries and appearances of the menu buttons that make the menu buttons
responds to the on/off stages. The button and menu prototypes were used as children of the dashboard in the scene
graph.

133

“ w49 “ 91781591707 AtdsanInensINAIaRT uunAnandeAalang

Buildings:

This prototype has all buildings’ geometrical database nested under a Switch node that has whichchoice field exposed.
This allows the prototype to be use and call a specific building to the scene graph. The buildings’ scale and material are
exposed to allow access of new value to modify its properties. In addition, there is a TouchSensor built-in, with enabled
and touchTime fields exposed, to allow a building called to the scene graph to interact with the user and perform
functions specified in the main VRML scene graph.

The prototype can be easily modified. Each building in an instance, named with the building number. They were sorted
by the building number. New geometry of the building can replace the old one by simply cut and paste the new syntax
over the old one. New buildings can also be added to the database. The new buildings can be inserted to maintain the
ordering by building numbers or be appended to the file at the end.

PROTO BTdg 5
exposedrield SFInt32 Bldgchoice_ -1
exposedField SFNode Mat Mater1a1 {diffusecolor 0.8 0.7 0.6 specularcolor 0.8 0.8 0.8}
exposedField SFvec3f Scale 1 11
exposedField SFBool Enabled FALSE
eventout SFTime Touch

children

DEF Sensor TouchSensor {
touchTime IS Touch
enabled IS Enabled

DEF b1dg?§a12 {ransform { scale 1s scale

DEF B%dgsw1tch switch é :
whichcChoice 15 BldgChoice
choice [
DEF b394 Transform {
children [
shape {
geometry IndexedFaceSet {
coord Coordinate {

-3.11667 1.1949e-05 0.733333
-3.11667 0 -2.84217e-16

convex FALSE

coordrndex [
0252423 222120191817 1615 14 13 12 11 1098765 4321-1
56221250249 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 -1

015126 -1
] 505112 -1

}
appearance DEF bAppl Appearance {
material IS Mat

Figufe 13. Buildings prototype.
Dashboard:

The dashboard prototype defines parameters and sensors for the children nodes to be properly displayed in front of the
viewer as it moves through the 3D environment. This prototype has an open children field that allows geometries and
other VRML nodes to be added for flexible functionalities of the dashboard interface. The ProximitySensor and
Collision nodes are the main properties of this prototype. The ProximitySensor tracks the current position of the viewer
and send translation (position) and orientation (rotation) of the viewer to update the translation and orientation of the
dashboard’s children nodes so that all children maintain their relative position to the view at all time.

134

.
a1 17 UnarAnun 2544

PROTO Dashl [
exposedrield MFNode buttonNode []

DEF Dashboard Group {
children [
DEF PrxSl ProximitySensor { size 100000 100000 100000}
DEF CN Collision {
collide FALSE
children [
DEF Board Transform {
children [
DEF Button_ Transform
translation -0.12 -0.11 0.06
children IS buttonNode

DEF DL2 DirectionalLight {
direction -0.5 0.3 -
} #thesoard
ROUTE Prxsl.position TO Board.translation
ROUTE_PrxSl.orientation TO Board.rotation
} #collision
} #Group

} #PROTO

Figure 14. Dashboard prototype.
Button & Menu:

The button prototype is a library for a square button which can have two texture maps. The purpose of the prototype of a
button with two texture maps is to allow the appearance of the button to change when clicked to be on or off. The URLs
of the two texture maps are exposed, butfonlnactiveTexture and buttonActiveTexture, so that the image texture file can
be specified when used in the VRML scene graph. The menu prototype has the exactly the same properties as the button
prototype, except the geometry is a rectangle made for the variables menus.

The prototype was built with a Switch node that contains two choices. The Switch node has whichChoice exposed,
defined with a customized name buttonSwitch. Each choice has an exposed texture’s URL that can be specified when
used in the scene graph. One choice is for the “off” stage with one texture map; the other is for “on” stage, when
clicked, with another texture map. The prototype needs a TouchSensor and a Script to register the “on/off” toggle stages
in the main scene graph.

PROTO dashButton [
exposedField SFString buttonName “"select menu"
exposedField MFString buttonActiveTexture []
exposedField MFString buttonInactiveTexture []
exposedField SFInt32 buttonswitch 0O

Transform {
children [
DEF switchButton Switch {
whichChoice I5 buttonswitch
choice [.
DEF inactiveButton Transform {
children [
shape {
geometry DEF face IndexedFaceset {
coord

}
appearance DEF y91 Appearance {
material DEF buttonColor Material {}
texture DEF ImText ImageTexture { url IS buttonInactiveTexture }

}
}]
DEF inactiveButton Transform {
children
shape {
geometry USE face
appearance Appearance { .
texture DEF ImTextZ ImageTexture { url IS buttonActiveTexture}
material USE buttonColor

Figure 15. Button prototype.

135

“ W4T * 11781731077 Az RenTINANART iy ivedaRalang

External Models of the Context

There are two files of static models of the context for the North Campus academic buildings—family housing complex
and the ground, with streets and parking lots layout. The two models were products of the 3D CAD models. The family
housing complex was exported separately from the overall campus model. The streets and parking lots were, however,
converted into an image of the plan (top) view. This is because of the geometries of these elements have far too many
polygons. Their large number of polygons impede the real-time interactive performance of the final VRML model.
Moreover, they are 2-dimensional objects that need not be interactive in the VRML application. They provide visual
references for the viewer. Thus, in order to optimize the performance, the VRML model for the ground with streets and
parking lots was done by creating a large rectangle and texture mapped with the image of the plan view of the campus.
The two models were inlined into the final VRML scene graph.

VRML Scene Graph: Master File
Environment Enhancement

As shown in the Figure 12, the prototypes and external VRML models of the context were brought into the scene graph.
In addition, the scene environment components were added. NavigationInfo defines the navigation speed, types of
navigation. Light sources enhance the visual quality of the model at any view angle. Background adds color gradients
for the sky and ground, and defines the horizon. Scripts were the major component of the complex interactivity in the
model. Viewpoints add predefined views of the model for easy navigation.

Models

Buildings were added to the scene graph using the library in the buildings prototype. The prototype made this part of the
programming truly simple. Figure 16 is the list of syntax to add all the buildings into the scene graph. Each building was
instanced with building number. Each building is equipped with a TouchSensor (built-in in the prototype). The sensor
receives an event from the viewer by the mouse click on the building and passes the value to a Script, Bscript. The
Script, then, assigns an index value and sends it to the database Script, Ascript. The Ascript retrieve data values from the
data arrays and construct a couple of new strings to display detail information about the selected building—Bldgno,
electricity, water, and natural gas costs for the selected year, and building name.

DEF b]gg?dTran?form 1 #loading bTdgs From bTdgsPRGTO to the scenegraph
ch1 ren

DEF b394 Bldg Es]dgchoice 0
DEF b395 Bldg {BldgChoice 1
DEF b396 Bldg {BldgChoice 2
DEF b427 Bldg {BldgChoice 14
DEF b432 Bldg {BldgChoice 16
DEF b440 Bldg {BldgChoice 20
DEF g441 Bldg {BldgChoice 21
DEF ba42 Bldg {BldgChoice 22
DEF b443 Bldg {8ldgChoice 23
DEF b445 Bldg {BldgChoice 24
DEF b555 Bldg {BldgChoice 30
DEF g510 Bldg {BldgChoice 28
DEF b420 Bldg {BldgChoice 12
DEF b407 Bldg {BldgChoice 9}
DEF b4l4 Bldg {BldgChoice 10
DEF b447 Bldg {BldgChoice 26
DEF g424 Bldg {BldgChoice 13
DEF b446 Bldg {BldgChoice 25
DEF b439 Bldg {BldgChoice 19
DEF b403 Bldg {BldgcChoice 6}
DEF b429 Bldg {BldgChoice 15}
DEF b3%7 Bldg {BldgChoice 3}
DEF g435 Bldg {BldgChoice 18}
DEF b400 Bldg {BldgChoice 4
DEF b406 Bldg {BldgChoice 8
DEF b402 Bldg {BldgChoice 5
DEF g415 Bldg {BldgChoice 11}
DEF g515 B1dg {BldgcChoice 29}
DEF g404 Bldg {BldgChoice 7}
DEF g448 Bldg {BldgChoice 2?}
DEF g433 Bldg {8ldgChoice 17

Figure 16. VRML code to add all buildings into the scene graph.
Dashboard

All the menu items were children of the dashboard prototype. There are three major groups of elements on the
dashboard. The first group is the set of menu buttons. Initially, only Year menu buttons are visible. The second group is
the instructional texts. The texts are dynamically updated according to the menu buttons selected. The third group is the
scale slider to control the height scale of the interactive models. The behaviors of these groups are described below.

136

Menus

Menu

Graphical Representation

o -
iU 17 UnarAnun 2544

Functions

Year menu

90 '91 '92 '93 94 '95 '96 '97 '98

(inactive)

9091 '92 '93 ‘94 95 ‘96 97 ‘98

" Reset button (inactive)
.@. Reset button (active)

e TouchSensor and buttonScript toggle inactive/active
states of the appearances. The buttonScript assigns
value to the selected year to the database Script,
Ascript, to identify proper index of the database
arrays.

e Enables the animation marker and moves it over the
selected Year button.

e Resets the buildings’ heights and Height Scale
slider.

e Toggles Height by and Color by menus.

e Changes line 1 of the instructional text to show the
value of the selected year.

e Enables buildings’ TouchSensor.

Reset button

e Resets buildings’ heights, colors, animation
marker’s position, instructional texts, Height Scale
slider to initial state.

* Disables animation marker and buildings’
TouchSensor.

Height by & Color by
menu

Height by: Color by: (inactive)

.Helght by: .Color by: (active)

e Toggle inactive/active states of their appearances.

e Toggle variable menus and animation Play/Pause
button (but not enable it).

® Reset buildings’ heights, colors, Height Scale
marker and value to 100% position.

Variables menu
(Electricity, Water,
and Natural Gas)
under Height by and
Color by menus

(inactive) (active)
Electricity I Electricity
Water I Water
Natural Gas l Natural Gas

e Under Height by menu, enable animation Play/Pause
button.

e Change Max. value text on the Height Scale’s scale
bar.

e Assign the indexing value for either height or color
to the Ascript.

¢ Under Color by menu, set buildings’ colors to
represent the data value in red color theme—brighter
reds for higher energy costs.

e If there is a building selected (with blue color added)
to show data values in the Text5 and Text6, click on
the selected color variable again will reset the
selected building’s color to the red theme.

e Change either line 2 or line 3 of the instructional text
to show the selected variable and Min. and Max.
values of the selected variable of the selected year.

Animation Controls

(Animation Marker)

Play/Pause

e Starts TimeSensor to animate the buildings’ heights
according to the selected Height by variable.

* Play button disables Year, Height by, Color by, and
Reset menu buttons and Animation Marker. Pause
button enables them back.

Animation Marker

e Dynamically sets buildings’ heights by assigning
selected year indexes as it is moving over the year
buttons.

Instructional Texts

These texts are located next to the menu buttons, at the top around the center of the screen. Three lines of the
instructional texts can promptly display information about the selected menu items—year, height by, and color by. The

137

“uti1dn * 117aTTInT AnzannensiuAand snanendudading

texts’ strings are directly accessed by the Ascript to update or reset the values of the strings when the menu buttons are
clicked. The text strings are predefined in a series of arrays and variables. The value in an array is retrieved when a
corresponding menu button is selected.

TextZString = new Array("1. Year: 19917, "1. vear: 1992', '1. vear: 1993', 'I. vear: 1994', 'I, vear: 1995, ‘1. vear:
1996', '1. vear: 1997', '1. vear: 1998', 'Model is reset. Please select Year, Height, Color'); .

Text3string = new Arrir(2. He1ght Electricity Cost x 0.0005', '2. Height: water Cost x 0. 0005', '2. Height:
Natural Gas Cost x

Text4str1ng = new Array(’ 3 CQ1or Electricity Cost', '3. Color: water Cost', '3. Color: Natural Gas Cost');

pefText2 = 'l. Select Year' i //default Text2 string

DefText3 = '2. Select variable for Height'; //default Text3d string

pefText4 = ‘3. select variable for color’; //default Text4 string

De;Teth = 'Click on a Bldg to view Data value'; //default Text5 string

pefTexthb = "';

Figure 17. Instructional texts were predefined in Ascript.
Height Scale Slider

Because of the heights of the buildings are used to represent the energy data which can be as high as
979,000, the buildings will be so tall that, in the predefined views, viewer cannot see the complete
model. The Height Scale control was created to allow viewer to manipulate the heights of the buildings
to a preferred size and fit all the buildings in the window. The scaling of the buildings’ height
maintains the relative proportion of the data values of the selected energy variable of the selected year.

The Height Scale slider is equipped with a PlaneSensor that receive event from the user and send the
event to the slider’s marker to change its position, and to a Script, sliderScript, to change the scale of
the buildings as well as to change the text string of the scale factor. The scale controlled by this slider
ranges from 0.01 to 200%. There is also a text string at the top of the slider’s ruler displaying the
maximum value of the selected energy variable of the selected year. This is to provide further
information for the user to understand the relative proportion of the buildings’ height while
manipulating the scale control.

Height Scale %

Figure 18. Height Scale slider.
The Scripts

There are a total of five Scripts to facilitate the interactivity among the buildings and the dashboard elements. Figure 19 illustrates
how events are to be passed to from and to the Script and VRML nodes. Complex paths of events are centered at the 4Script, the
Script that contains the energy database (see Figure 20) and directly accesses all the buildings’ geometries. The Scripts were created
to correspond to the set of VRML components described above. Two of the Scripts, buttonScript and menuScript, handle the events
from the menu items. They assign proper identifier values for the user’s selections of variables. Then, the values are sent to the
AScript to index the values in the database arrays. When a Height by variable is selected for a year, new height values are calculated
and used to replace the vertical scale of the buildings. Similarly, when a Color by variable for a year selected, new color values are
calculated for the Red value of the buildings’ diffuseColor. Moreover, AScript interact directly with the animation components
(AnimPS, AnimTime, and tAnim). The buttonScript receives values when a Year button is clicked. The Script assigns a pointer value
for the selected year and directly access the selected button’s prototype to switch its appearance. The year pointer is, then, sent to
AScript. While the AScript store the value from the buttonScript, it accesses line 1 of the instructional text, Text2, and update the
string to display the value of the selected year. The menuScript receives events from the Height by, Color by, and the three energy
types—Electricity, Water, and Natural Gas—menu buttons and assigns index values for the selected items. It, then, passes the values
to the AScript for functions to interact with the buildings’ properties. In addition, the instructional texts, Text3 and Text4, will be
updated to display the current selected menu items for Height and Color.

The buttonScript will enable the TouchSensors on the buildings when a Year menu is selected. Each building’s
TouchSensor, once enabled, will receive an event from user and send it to the BScript for indexing. The selected
building index is then sent to the AScript. The AScript will select proper data values of the selected building and selected
year to update the text strings in the instructional texts, Text5 and Text6. Another feature implemented in the interaction
with the buildings is to adjust the color property of the selected building. The AScript receives BTouch index value for
the selected buildings and replace a new value, 0.8, to the blue channel in the RGB color property of the selected
building. Clicking on the menu button of the variable selected for Color by menu will reset the color representing the
selected data value.

138

AR 17 s 2544

The sliderScript interacts with the Height Scale slider to manipulate the height scale of the buildings representing the
data value to fit user’s viewing preference. The Script also directly interact with the Height Scale components on the
dashboard.

b Chogs

{ v
o Inshil.Tlcﬁonal Texts Height by Color by

f—— jand het ript and
> E;h!e vl P'hi."t';d%(sh

H
i
gl B LR TR : ! uIE.J.L}‘ menu if:ms l'l!l'lu'll!ils
— ; s ’
H .] A 1
. .] L L
i : E menuScript ¥ ¥
buttenScript i : ﬂpwlfa;_jr! E W I ff —f R T R T L TP
1k s - . L] : = ol et
. MehingMeny =— 1| w2 : H ! H
R Rhaiiniaty g ¥ Marker -
[T, e NS 1) . i | stderScrpt :
. . * . .
H T DO : T et RS Yo Ly crider Text <
H * } | - scale -
i e PRI . PPy . ey, =T S B TS
: Year Buttons semeeesadeaaat : :
b e aeSle < AScript ! H
1 T AnmSlide <--u.q- [nitatze | ‘---vu‘.rlh-—ﬂ-.:!--.-l'l'-. 3
H ; s S S - 4
Y : Hielected H
I | rs#touc L e :
hT) L i

Arimb gn

-

PP

BScript

DIToueh === = =« = =« h 31T o0

frachien

b o S -

e

Texts, Tekté

Figure 19. Scripts and functions.

url “javascript:
funcetion initialize() { fithe main database
Bldglo = new Array(394,395,396,397,400,402,403,404, 406,407,414, 415,420,424, 427,429, 4’
BldgName = new Array('LURIE ANN AND ROBERT H TOVER','BAGNOUD FRANCOIS-XAVIER BUILDINC
Bldgft3 = new Array(355150,12102940, 13059483,1705886,8570578, 1069625, 5661654, 5490909,
€91 = new Array(0,0,0,0,62095.83,22503.6,52333.68,126318. 4,88574.99, 470642, 05, 113261.
e92 = new Arrey(0.00,5931.73,0.00,0.00,69396.77,20470.8,60177.6,134769.6,77930. 5, 849

€93 = new Arzray(0.00,97614.72,0.00,0.00,82536.39,20210. 4, 58616.8,129175. 2, 76962, 82, 5.
€94 = new Array(0.00,208697.92,4227.88,4,87,81619. 45,16144, 59028, 48, 123663. 2, 71672, 8«
€95 = new Array(0.00,185587.2,21552.36,5499.2,89776.08,16592,54998. 4,114672, 70164, 48,
€96 = new Array(3906.96,215539.2,215720.82,62990.48,88757, 68,20432, 59260. 8, 117024, 64¢
€97 = new Array(l3469.42,217612.8,509221.04,108032,68892, 48,19776,67769.6, 113520, 654;
€98 = new Array(l0028.88,244454.4,559571.12,107409. 92, 118080, 18976, 68937, 6, 118464, 67
€99 = new Array(l,l,1); //fa
w9l = nev hrray(0.00,0.00,0.00,0.00,8130.96,1335, 44, 7081.96,21247. 96,935.13,31522. 39,
w92 = new Array(0.00,0.00,0.00,0.00,7899.8,3121.55,4248.05,18544.7,987.65,40357. 67, 2t
w93 = new Array(0.00,31423.58,0.00,0,00,14267.9,6721.39,7516. 33,21387. 86,1102, 87, 53L¢
w94 = new Array(0.00,55356.23,0.00,0.00,19966.8,3225. 08,5757, 32,22988, 38,1137, 92, 550¢
w95 = new Array(0.00,524.9,0.00,0.00,15819.62,3784,99,1308. 86,24305.63,1212. 31, 55788.
w96 = new Array(86.64,70868.95,0.00,0.00,22079.16,7205. 84, 1482. 96, 27884, 07, 1784, 55, 5
w97 = new Array(l0l.25,656862.95,13446.64,1807.1,14926,62,14607.3,5361.35,268186. 11, 14
w98 = new Array{271.01,53530.87,14196.85,2427.83,5248,32,9950.65, 5447. 81, 32046. 42, 14"
w99 = new Arrey(l,1); /'for

ng9l = new Array(0.00,0.00,0.00,0.00,20626.16,12477. 54,24328, 38,29333.85,3111,75, 598
ng92 = new Array(0.00,0.00,0.00,0.00,26400,17,8407.25,20442,23,24648.42,7376.768, 7649+

ngd3 = new Array(0.00,26886.07,0.00,0.00,26961.42,9687. 52,20274. 44, 24446.07,7352.65,"
ng94 = new u:ay(n‘uu,:nsn.?s,o.nn,o.on,zuosq,57,134&0.55,19323.6,19453.ag,mnzs.sz,
ng95 = new Array(0.00,27961.51,0.00,0.00,21181,84,7763.75,19371.79,23355,8255. 05,697t
ng96 = new Array(0.00,40504. B86,59370.22,13377.48,30089.18,11639.48,25107. 22,30258, 51,

ng98 = new Array(0.00,40249.66,91596.79,18946, 56,26266.99,11206,9,25739. 18, 31036. 32, ¢
ng99 = new Arrey(l,l,1); 7/fc
eMax = new Arrey(964807.2,979433.28,908960.64,913839, 36,82084l.6,857996, §,814390. 4, 8:
wMax = new Array(S55865.32,53081.84,73292.72,61088.95,59586.27,70868.95,74955, 07, L178¢
ngMax = nev Array(111018.1,112081.51,121296.34,124283.07,95386.16,139744. 41, 145404, 2¢
bldgHeight = new Array(36,16,18,16,6,8,8,8,8,16,12,4,24,8,12,12,15,24,12,4,8,8,12,8,¢
no0EBldgs = 31;

ng97 = new Array(0,46215.15,113445.79,0.00,31658.2,15137.14,29829,02,35968,11174. 59,
-

Figure 20. Energy data arrays in Ascript.

139

“WhAn “ 1117 AsantiranTINAYAR T uuAneduRaUNT

The Product

There are 7 .wrl files—one master file, 4 prototypes, and 2 external models—used in this application of VRML
visualization of the University of Michigan North Campus energy consumption (cost) from 1991 to 1998, along with 34
images created for the appearances of the interactive buttons and the contextual ground, and a sound file for the effect
when an object is clicked. The scene was embedded into an HTML format to control the proportion of the VRML scene.
This is because the visibility of the menu items on the dashboard depends on the proportion of the projection plane
(window or frame size). The embedded VRML scene in an HTML document prevent any adjustment of the proportion,
thus, proper view is maintained.

(The interactive model can be access at http://www-personal.engin.umich.edu/~tnac/vrml/GISVisualization)

Conclusion

The development of the VRML application in this study accomplishes a certain levels of dynamic real-time interactive
visualization of the spatial data of the GIS. User can interact with the menu interface and also directly with the buildings
themselves. Five dimensions of the data can be visualized dynamically. Combination of objects’ heights and colors are
used as a three dimensional bivariate plot (two dimensions—two attributes) of the energy data at their geographical
location (two dimensions—x and y coordinate). In addition, the temporal controls (animation and slider through years)
allows user to examine the changes of the buildings’ attributes in the fifth dimension, time. The animation features
(Play/Puase button and Year slider) were found to be effective way to visualize the temporal variables. This capability
of VRML is far more effective than attempts to create computer movies to represent the time variable. The principle
problem with the movie was the time and effort required to produce a hundred or so images of the models and record
each one into the movie sequences (Openshaw, Waugh, and Cross, 1994). The real-time six-degree-of-freedom
navigation in VRML enables the visualization with superior exploratory capability. This allows user to explore the
data—spatial and non-spatial aspect—from many viewpoints. In addition, the dynamic interactive VRML model

provides additional advantages over the predefined animation movies with ability to select any single or a pair of
variables to be viewed.

This study focused on the interactive and dynamic manipulation of the visualization of the spatial/geographic
information rather than the realism of the scene. Because in virtual reality application the performance of the system
varies upon the level of interactivity and the realism. There is a trade off for the virtual reality application between the
level of interactivity and the realism. The two factors have an inverse relationship to each other. When both are high, the
system performance would be impeded. Thus, a virtual reality developer must carefully consider what would be the

optimal combination of these factor in order to accomplish the objectives of a specific visualization of the geographic
information.

The future of the VRML visualization of geographic information would be improved with the improvements in two
areas—hardware performance and new generation of the VRML standard and specification. The computing power of
the computers was predicted to accelerate to faster speed and higher capability in 3D graphics. This would si gnificantly
affect the development and the application of virtual reality. In addition, there has been an attempt, by the Web3D
consortium, to improve the specification of the VRML 97 standard to add more features and capabilities of future
VRML, X3D, to handle geographic information. For example, in the new draft of the X3D standard, there are several
new nodes to facilitate the terrain models and georeferencing coordinate system; these nodes are: GeoCoordinate,
GeoElevationGrid, Geolnline, GeoLocation, GeoLOD, GeoMetadata, GeoOrigin, GeoPositionInterpolator,
GeoTouchSensor, and GeoViewpoint. In addition, there are new type of geometry to be included in the new generation
of VRML,; that is the NURBS (Non-Uniform Rational B-Spline). The new nodes for NURBS would include
NurbsCurve, NurbsCurve2D, NurbsGroup, NurbsPositionInterpolator, NurbsSurface, and
NurbsSurfaceTextureCoordinate (Web3d.org). These new nodes, geographic and NURBS, would improve the capability
of the virtual reality application using the VRML, not only the new types of geometry but also the new interactive
functions (interpolators and sensors). Once the new standard is released and accepted, it would be implemented by many
of the 3D modeling software packages as a transportable 3D file format, and also, hopefully, there will be development
of a new type of softwares that integrate this standard with the 3D modeling into a complete virtual reality authoring
packages.

140

o ol
afuf 17 Un11Anwn 2544

Bibliography

Berry, Joseph K., David J. Buckley and Craig Ulbricht (1998), Visualize Realistic Landscapes: 3-D Modeling Helps GIS Users
Envision Natural Resources, GeoWorld (http://www.gw.geoplace.com/gw/1998/0898/898vis.asp)

Carey, Rikk and Bell, Gavin (1997), The Annotated VRML 2.0 Reference Manual. Addison-Wesley.

Gahegan, Mark. (2000), Visualization as a tool for GeoComputation, in Openshaw, Stan and Abrahart, Robert J. (eds.)
GeoComputation, London: Taylor & Francis, pp. 253-74.

Gallop, J. (1994), State of the art in visualization software, in Hearnshaw, Hilary M. and Unwin, David J. (eds.) Visualization in
Geographic Information Systems, Chichester: John Wiley & Sons, pp. 42-47.

Gillings, Mark and Goodrick, Glyn (1996), Sensuous and Reflexive GIS Exploring Visualisation and VRML,
http://intarch.ac.uk/journal/issuel/gillings toc.html.

Huang, Bo and Lin, Hui (1999), GeoVR: a web-based tool for virtual reality presentation from 2D GIS data, Computers &
Geosciences, 25, pp. 1167-1175.

Kim, Kyong-Ho, Kiwon Lee, Ho-Geun Lee, and Young-Lyol Ha (1998), Virtual 3D GIS's Functionalities Using Java/'VRML
Environment, in J. STROBL and C. BEST (eds.) Proceedings of the Earth Observation & Geo-Spatial Web and Internet
Workshop '98, Volume 27. Instituts fiir Geographie der Universitit Salzburg.
http://www.sbg.ac.at/geo/eogeo/authors/kim/kim.html.

MacEachren, A. M. and Taylor, D. R. F. (ed.) (1994), Visualization in Modern Cartography. Oxford, UK: Pergamon.

MacEachren, A., et al (1994) Introduction to Advances in Visualizing Spatial Data, in Hearnshaw, Hilary M. and Unwin, David J.
(eds.) Visualization in Geographic Information Systems, Chichester: John Wiley & Sons, pp. 51-59.

MacEachren, A. M. (1998), Visualization-Cartography for the 21st century. http://www.geog.psu.edu/ica/icavis/poland 1.html.

Openshaw, S., Waugh, D., and Cross, A. (1994), Map Animation as a Spatial Analysis Tool, in Hearnshaw, H.M., and Unwin, D.J.
(eds.) Visualization in Geographic Information Systems, Chichester: John Wiley & Son, pp.131-138.

Roehl, B., et al. (1997), Late Night VRML 2.0 with Java. Emeryville: Ziff-Davis.

Turk, A. (1994), Cogent GIS Visualizations, in Hearnshaw, Hilary M. and Unwin, David J. (eds.) Visualization in Geographic
Information Systems, Chichester: John Wiley & Sons, pp. 26-33.

Web3d Consortium (2000), The Virtual Reality Modeling Language International Standard ISO/IEC
14772:200x,http://www.web3d.org/TaskGroups/x3d/specification/index.html.

141

