

การใช้กิจกรรมการสืบเสาะทางวิทยาศาสตร์เพื่อพัฒนาการรู้วิทยาศาสตร์ของครูและศึกษานิเทศก์

Using scientific-inquiry activities for developing teachers' and supervisors' scientific literacy

ลือชา ลดาชาติ^{a,*} และ โชคชัย ยืนยง^b

Luecha Ladachart^{a,*} and Chokchai Yuenyong^b

^a วิทยาลัยการศึกษา มหาวิทยาลัยพะเยา 56000

School of Education, University of Phayao, Phayao 56000, Thailand

^b คณะศึกษาศาสตร์ มหาวิทยาลัยขอนแก่น ขอนแก่น 40002

Faculty of Education, Khon Kaen University, Khon Kaen 40002, Thailand

ARTICLE INFO

Article history:

Received 20 January 2015

Received in Revised form 4 January 2016

Accepted 7 January 2016

Keywords:

science teachers and supervisors,
scientific inquiry,
scientific literacy,
teaching and learning science

ABSTRACT

This research report presents the results of implementing six scientific inquiry learning activities with 72 science teachers and supervisors in southern regions of Thailand. This research aimed (1) to compare the science teachers' scientific literacy before and after the implementation and (2) to compare the supervisors' scientific literacy before and after the implementation. The researchers used a pre-experimental design to address the research objectives. In doing so, the researchers collected data using two scientific literacy tests, which were proved to be equal. Each test consisted of 26 four-choice questions. The researchers analyzed the data using a software package. The research results revealed that both the science teachers and the supervisors had significantly gained their average score after the implementation.

บทคัดย่อ

รายงานวิจัยนี้นำเสนอผลการนำกิจกรรมการเรียนรู้ด้วยการสืบเสาะทางวิทยาศาสตร์ จำนวน 6 กิจกรรม ไปขยายผลกับครูวิทยาศาสตร์และศึกษานิเทศก์ จำนวนทั้งสิ้น 72 คน ในภาคใต้ การวิจัยนี้มีวัตถุประสงค์เพื่อ (1) เปรียบเทียบการรู้วิทยาศาสตร์ของครู “ก่อน” และ “หลัง” การอบรม และ (2) เปรียบเทียบการรู้วิทยาศาสตร์ของศึกษานิเทศก์ “ก่อน” และ “หลัง” การอบรม ผู้วิจัยใช้การวิจัยแบบการทดลองเบื้องต้น และเก็บข้อมูลด้วยแบบทดสอบการรู้วิทยาศาสตร์ 2 ชุด ที่ผ่านการทดสอบแล้วว่าเท่าเทียมกัน แบบทดสอบแต่ละชุดประกอบด้วยข้อสอบแบบเลือกตอบ 4 ตัวเลือก จำนวน 26 ข้อ ผู้วิจัยวิเคราะห์ข้อมูลด้วยโปรแกรมคอมพิวเตอร์ ผลการวิจัยปรากฏ

ว่า ทั้งครูและศึกษานิเทศก์ทั้งหมดเฉลี่ย “หลังการอบรม” ได้สูงกว่าคะแนนเฉลี่ย “ก่อนการอบรม” อย่างมีนัยสำคัญทางสถิติ

คำสำคัญ: ครูและศึกษานิเทศก์วิทยาศาสตร์ การสืบเสาะทางวิทยาศาสตร์ การรู้วิทยาศาสตร์ การเรียนการสอนวิทยาศาสตร์

บทนำ

หลายประเทศทั่วโลกได้กำหนดให้ “การรู้วิทยาศาสตร์” (Scientific Literacy) เป็นเป้าหมายหลักของการจัดการศึกษาวิทยาศาสตร์ให้กับพลเมืองของตนเอง (Bingle & Gaskell, 1994; Hurd, 1998; Laugksch, 2000; Organisation for Economic Co-operation and Development [OECD], 2013) ถึง

* Corresponding author.

E-mail: ladachart@gmail.com

แม้ว่า “การรู้วิทยาศาสตร์” ยังไม่มีคำนิยามที่ทุกฝ่ายเห็นพ้องต้องกัน (DeBoer, 2000) แต่โดยทั่วไปแล้ว คำนิยามถึง “ความสามารถ ในการทำความเข้าใจกระบวนการทางวิทยาศาสตร์ และมีส่วนร่วมกับข้อมูลทางวิทยาศาสตร์ ในชีวิตประจำวัน ได้ อย่างมีความหมาย” (Fives, Huebner, Birnbaum, & Nicolich, 2014, p. 550) ความสามารถนี้ไม่ได้อธิบายแค่ความเข้าใจเกี่ยวกับแนวคิดและทฤษฎีทางวิทยาศาสตร์ แต่ยังหมายรวมถึง ความรู้เกี่ยวกับหลักการและแนวทางที่ปฏิบัติงานทางวิทยาศาสตร์ (OECD, 2013) ซึ่งช่วยให้บุคคลต่าง ๆ เข้าใจในส่วนร่วม และตัดสินใจในประเด็นข้ออุกเฉียงเกี่ยวกับวิทยาศาสตร์ได้ (Kolsto, 2001)

เข่นเดียวกับนานาประเทศ ประเทศไทยได้กำหนดให้ “(ผู้เรียน) ทุกคน... จำเป็นต้องได้รับการพัฒนาให้รู้วิทยาศาสตร์” ซึ่งครุศาสตร์ทำได้โดยการเปิดโอกาสให้ นักเรียนได้ทำ “การสืบเสาะหาความรู้” (Inquiry) (สำนักวิชาการและมาตรฐานการศึกษา, 2553, หน้า 1) ด้วยแนวทางนี้ นักวิทยาศาสตร์ศึกษาจำนวนมากจึงทุ่มเทเพื่อพัฒนาและส่งเสริมการจัดการเรียนการสอนที่เน้นการสืบเสาะหาความรู้ (กุศลิน, 2550; จิระวรรณ และ วรรณพิพา, 2554; จุฬารัตน์ และ นฤมล, 2553; ชาตรี, 2551; ชิติชา และ วรรณพิพา, 2553; สักดิ์ศรี, 2554)

การจัดการเรียนการสอนวิทยาศาสตร์โดยการสืบเสาะหาความรู้นี้พื้นฐานมาจากความคิดที่ว่า วิทยาศาสตร์เป็นทั้ง ความรู้และกระบวนการ ซึ่งไม่สามารถแยกออกจากกัน ได้ อย่างสิ้นเชิง (จิระวรรณ และ วรรณพิพา, 2554) นักเรียนจึงควร ได้เรียนรู้วิทยาศาสตร์ “ที่เน้นการเรื่องความรู้กับกระบวนการ” (สำนักวิชาการและมาตรฐานการศึกษา, 2553, หน้า 1) เนื่องจากนักเรียนต้องมีความรู้ทางวิทยาศาสตร์พัฒนาองค์ความรู้ ที่ทางวิทยาศาสตร์ (จิระวรรณ และ วรรณพิพา, 2554) ความคิดนี้ สอดรับกับทฤษฎีการเรียนรู้ที่ว่า การเรียนรู้วิทยาศาสตร์จะเกิด ขึ้น ได้อย่างมีความหมาย ก็ต่อเมื่อนักเรียนได้ลงมือปฏิบัติและมี ปฏิสัมพันธ์กับสิ่งแวดล้อม เพื่อตอบคำถามที่ตั้งเองสนใจไว้ (Bybee et al., 2006) ในการนี้ นักเรียนควรได้คิดทบทวนความ เข้าใจเดิมของตนเอง และใช้ข้อมูลจากการลงมือปฏิบัติและ การมีปฏิสัมพันธ์กับสิ่งแวดล้อม เพื่อปรับเปลี่ยนความเข้าใจ เดิมของตนเอง ให้สามารถอธิบายปรากฏการณ์ทางธรรมชาติ ได้อย่างหลากหลายและสมบูรณ์ยิ่งขึ้น (Posner, Strike, Hewson, & Gertzog, 1982)

การเรียนรู้วิทยาศาสตร์โดยการสืบเสาะหาความรู้ใน เพียงแค่ช่วยให้ นักเรียนได้พัฒนาความเข้าใจทางวิทยาศาสตร์

ฝึกทักษะกระบวนการทางวิทยาศาสตร์ บ่มเพาะจิตวิทยาศาสตร์ และสร้างเจตคติที่ดีต่อวิทยาศาสตร์ (Bybee et al., 2006) หากยังช่วยให้ นักเรียนเข้าใจธรรมชาติของวิทยาศาสตร์ อีกด้วย (ชาตรี, 2551) ทั้งหมดนี้มีส่วนช่วยให้ นักเรียนมีส่วนร่วม แสดงความคิดเห็น และตัดสินใจเกี่ยวกับประเด็นข้ออุกเฉียงต่างๆ ที่เกี่ยวข้องกับวิทยาศาสตร์ ได้อย่างเหมาะสม (พงศ์ประพันธ์, 2552) เนื่องจากคุณลักษณะเหล่านี้เป็นองค์ประกอบสำคัญของการเป็นผู้รู้วิทยาศาสตร์ (OECD, 2013; Yuenyong & Narjaikaew, 2009) การสืบเสาะหาความรู้จึงถูกยก ให้เป็นภาพแห่งความสำเร็จของการปฏิรูปการจัดการเรียนการสอนวิทยาศาสตร์ในยุคปัจจุบัน (Anderson, 2002)

แม้ข้อดีมีหลายประการ แต่การจัดการเรียนการสอนโดยการสืบเสาะหาความรู้ยังไม่เป็นที่แพร่หลาย (Dahsah & Faikhama, 2008) ครุฑอบกนยังขาดความรู้และความเข้าใจในการจัดการเรียนการสอนวิทยาศาสตร์โดยการสืบเสาะหาความรู้ (กุศลิน, 2550) ครุจั่นวนหนึ่งสับสนระหว่าง “การสืบเสาะหาความรู้” และ “การที่นักวิชาความรู้” (ชิติชา และ วรรณพิพา, 2553) ความสับสนนี้อาจเป็นสาเหตุให้ครุจั่นวนหนึ่ง เข้าใจว่า การจัดการเรียนการสอนวิทยาศาสตร์โดยการสืบเสาะหาความรู้คือการ “ให้นักเรียนสืบค้นข้อมูล” ก่อนที่ “ครุจั่นวนเพิ่มเติมจากที่(นักเรียน)ค้นมา” (จุฬารัตน์ และ นฤมล, 2553, หน้า 29) ในขณะที่ครุจั่นวนหนึ่งเข้าใจเพียงบางส่วน ว่า การสืบเสาะหาความรู้คือการ ให้นักเรียนได้ลงมือปฏิบัติ ดัง นั้น ถึงแม้ว่าครุจั่นวนนี้ใช้กิจกรรมที่เปิดโอกาสให้นักเรียนได้ ลงมือปฏิบัติ แต่การปฏิบัตินั้นก็เป็นเพียงการปฏิบัติตามขั้น ตอนต่างๆ ตามที่มีการกำหนดไว้ก่อนล่วงหน้าโดยปราศจาก ความเข้าใจเกี่ยวกับการปฏิบัตินั้นอย่างแท้จริง (จิระวรรณ และ วรรณพิพา, 2553; พงศ์ประพันธ์, 2552)

ด้วยเหตุนี้ นักเรียนส่วนใหญ่จึงมีผลลัพธ์ที่ทางการเรียนวิทยาศาสตร์ในระดับที่ “ยังไม่น่าพอใจ” (สถาบันทดสอบทางการศึกษาแห่งชาติ, 2555, หน้า 11) และขาดทักษะกระบวนการทางวิทยาศาสตร์ (เยาวเรศ เพ็ญศรี และ นฤมล, 2550; อุษา ธิราพร และ นฤมล, 2552) ยิ่งไปกว่านั้น นักเรียน จำนวนไม่น้อยไม่เข้าใจธรรมชาติของวิทยาศาสตร์ ตัวอย่าง เช่น กาญจน์ และ ชาตรี (2553) พบว่า ร้อยละ 71 ของนักเรียน ชั้นมัธยมศึกษาปีที่ 1 จำนวน 110 คน ไม่เข้าใจหรือเข้าใจคลาดเคลื่อนเกี่ยวกับกระบวนการ ได้ค่าน้ำซึ่งความรู้ทางวิทยาศาสตร์ ในขณะที่ สุทธิชา นฤมล และ พรพิพย์ (2552) กลับชี้แจงได้ว่า ประมาณร้อยละ 53 ของนักเรียนชั้นมัธยมศึกษาปีที่ 4 จำนวน 135 คน เข้าใจคลาดเคลื่อนเกี่ยวกับวิธีการทาง

วิทยาศาสตร์ นักเรียนเหล่านี้เข้าใจกล้ามภักดีว่า การทดลองที่มีขั้นตอนแน่นอนatyด้วยเป็นวิธีการเดียว (หรือวิธีการที่ดีที่สุด) ของการได้มาซึ่งความรู้ทางวิทยาศาสตร์

ผลการวิจัยข้างต้นแสดงว่า การจัดการเรียนการสอนวิทยาศาสตร์ยังไม่สะท้อนภาพของการได้มาซึ่งความรู้ทางวิทยาศาสตร์อย่างแท้จริง หลายฝ่ายจึงพยายามสร้างความชัดเจนและให้ข้อเสนอเกี่ยวกับการจัดการเรียนการสอนวิทยาศาสตร์โดยการสืบเสาะหาความรู้ จีระวรรณ และ วรรรณทิพา (2553, หน้า 15) กล่าวว่า การสืบเสาะหาความรู้ “ไม่ใช่เพียงการทำตามขั้นตอนของวิธีการทางวิทยาศาสตร์” หากแต่ทั้งครูและนักเรียนต้อง “เข้าใจอย่างลึกซึ้งถึงเหตุผลที่อยู่เบื้องหลังวิธีการหรือขั้นตอนเหล่านั้น” ศักดิ์ศรี (2554, หน้า 334) เลือกใช้คำว่า “การสืบเสาะทางวิทยาศาสตร์” แทนการใช้คำว่า “การสืบเสาะหาความรู้” เพื่อหลีกเลี่ยงการตีความที่คลาดเคลื่อนโดยครู พร้อมทั้งเสนอแนะด้วยว่า ครูควรรุ่งไว้หนักเรียนใช้กระบวนการทางวิทยาศาสตร์เพื่อตอบคำถามที่ตนเองสนใจแทนที่ “การทดลองแบบดั้งเดิม...ตามที่คู่มือบอก (ซึ่ง) มีความท้าทายทางสถิติปัญญาค่อนข้างน้อย” พงศ์ประพันธ์ (2552, หน้า 84) เลือกใช้ปรัชญาสัมมา เพื่อเรียกร้องอย่างกระชับแต่ได้ใจความว่า ครูควรจัดการเรียนการสอนวิทยาศาสตร์ “อย่างที่วิทยาศาสตร์เป็น”

เนื่องจากประเทศไทยได้ส่งเสริมการจัดการเรียนการสอนโดยการสืบเสาะทางวิทยาศาสตร์มาเป็นเวลานานนับทศวรรษ (จีรชวรรัตน์ และ วรรธนพิพา, 2554) แต่การสืบเสาะทางวิทยาศาสตร์อย่างแท้จริงก็ยังไม่แพร่หลายมากนัก นักเรียนจำนวนมากจึงยังขาดประสบการณ์ในการสืบเสาะทางวิทยาศาสตร์ สำนักวิชาการและมาตรฐานการศึกษา สำนักงานคณะกรรมการการศึกษาขั้นพื้นฐาน จึงมีแนวคิดที่จะพัฒนา กิจกรรมการเรียนรู้ที่เน้นการพัฒนานักเรียนในระดับ มัธยมศึกษาตอนต้น ให้มีความสามารถด้านการสืบเสาะทางวิทยาศาสตร์ ทั้งนี้เพื่อเผยแพร่ให้ครูและศึกษานิเทศก์ที่ยังไม่คุ้นเคยกับการจัดการเรียนรู้ด้วยการสืบเสาะทางวิทยาศาสตร์ นำไปใช้กับนักเรียนในพื้นที่ของตนเอง

รายงานวิจัยฉบับนี้นำเสนอผลจากการนำกิจกรรมการเรียนรู้โดยการสืบเสาะทางวิทยาศาสตร์ไปเผยแพร่กับครุและศึกษานิเทศก์ในพื้นที่ภาคใต้ทั้งนี้เพื่อ (1) เปรียบเทียบการรู้วิทยาศาสตร์ของครุ “ก่อน” และ “หลัง” การเรียนรู้ด้วยกิจกรรมการสืบเสาะทางวิทยาศาสตร์ และ (2) เปรียบเทียบการรู้วิทยาศาสตร์ของศึกษานิเทศก์ “ก่อน” และ “หลัง” การเรียนรู้ด้วยกิจกรรมการสืบเสาะทางวิทยาศาสตร์ เนื่องจากการวิจัยที่

ศึกษาการรู้วิทยาศาสตร์ของครูและศึกษานิเทศก์ในประเทศไทยซึ่งไม่มีปรากฏชัดเจน ทั้ง ๆ ที่บุคคลเหล่านี้มีบทบาทสำคัญในการส่งเสริมการรู้วิทยาศาสตร์ของนักเรียน ดังนั้น การวิจัยนี้จึงศึกษาว่า ครูและศึกษานิเทศก์มีการรู้วิทยาศาสตร์เพียงใด และกิจกรรมการเรียนรู้ด้วยการสืบเสาะทางวิทยาศาสตร์ซึ่งพัฒนาการรู้วิทยาศาสตร์ของครูและศึกษานิเทศก์ได้หรือไม่

กิจกรรมการเรียนรู้

การวิจัยนี้เป็นส่วนหนึ่งใน “โครงการพัฒนาความสามารถด้านการสื่อสารทางวิทยาศาสตร์เพื่อยกระดับคุณภาพการศึกษาวิทยาศาสตร์” โดยดำเนินกิจกรรมการการศึกษาขั้นพื้นฐานการศึกษา สำนักงานคณะกรรมการการศึกษาขั้นพื้นฐาน ซึ่งมีวัตถุประสงค์เพื่อสร้างและเผยแพร่กิจกรรมการเรียนรู้ที่เน้นการพัฒนา năngเรียนในระดับมัธยมศึกษาตอนต้น ให้มีความสามารถด้านการสื่อสารทางวิทยาศาสตร์ ในการดำเนินโครงการนี้ คณะกรรมการ ซึ่งประกอบด้วย ผู้วิจัย นักวิชาการ ศึกษา อาจารย์จากมหาวิทยาลัย ศึกษานิเทศก์ และครุวิทยาศาสตร์ รวมทั้งสิ้น 39 คน ได้พัฒนากิจกรรมการเรียนรู้ ด้วยการสื่อสารทางวิทยาศาสตร์ในช่วงเดือน พฤษภาคม–สิงหาคม 2557 ก่อนที่จะดำเนินการอบรมเชิงปฏิบัติ การในช่วงเดือนกันยายน 2557 เพื่อเผยแพร่ให้กับครุและศึกษานิเทศก์ในพื้นที่ต่าง ๆ ทั่วประเทศ จำนวน 5 รุ่น รุ่นละ 100–150 คน ซึ่งจะนำกิจกรรมการเรียนรู้ไปใช้กับนักเรียนในพื้นที่ของตนเองต่อไป โครงการนี้เป็นกิจกรรมหนึ่งที่จะช่วยเตรียมความพร้อมนักเรียนในการเข้าร่วม “โครงการประเมินผลนักเรียนนานาชาติ” (Programme for International Student Assessment: PISA) ในปลายเดือนสิงหาคม 2558

จากการวิเคราะห์ข้อสอบเก่าของโครงการประเมินผลนักเรียนนานาชาติ ผู้วิจัยพบว่า ข้อสอบเหล่านี้มุ่งเน้นประเมินความสามารถในการสืบเสาะทางวิทยาศาสตร์ในมิติต่าง ๆ ไม่ว่าจะเป็นการระบุปัญหาและคำนวנתทางวิทยาศาสตร์ การสืบกันข้อมูลทางวิทยาศาสตร์ การตั้งสมมติฐานทางวิทยาศาสตร์ การออกแบบการศึกษาทางวิทยาศาสตร์ การเลือกใช้เครื่องมือและวิธีการทางวิทยาศาสตร์ การจัดกระทำและนำเสนอข้อมูลทางวิทยาศาสตร์ การตีความและลงข้อสรุปทางวิทยาศาสตร์ การให้เหตุผลและโดยแยกทางวิทยาศาสตร์ และการตัดสินใจทางวิทยาศาสตร์ (ลือชา และ โชคชัย, 2558) ซึ่งล้วนแล้วแต่เป็นคุณลักษณะของการเป็นผู้รักษาความปลอดภัยทั้ง

สีน (OECD, 2013) นอกจากนี้ ผลการวิเคราะห์ยังบ่งชี้ด้วยว่า นักเรียนไทยประสบปัญหาในการให้เหตุผลเพื่อโน้มน้าวหรือให้แจ้งทางวิทยาศาสตร์ ดังนั้น คณะทำงานจึงเห็นพ้องกันว่า การพัฒนาภารกิจกรรมการเรียนรู้ด้องเน้นให้นักเรียนได้ทำการสืบเสาะทางวิทยาศาสตร์ในมิติต่าง ๆ อย่างหลากหลาย

การพัฒนาภารกิจกรรมการเรียนรู้เหล่านี้เป็นไปตามข้อเสนอในงานวิจัยของ Chinn and Malhotra (2002) ซึ่งกล่าวไว้ว่า กิจกรรมการเรียนรู้วิทยาศาสตร์ไม่ควรเรียนง่ายและตรงไปตรงมาจนเกินไป (ดังนั้น กิจกรรมการเรียนรู้ต่าง ๆ ในหนังสือเรียนทั่วไป ซึ่งนั้นให้นักเรียนได้ปฏิบัติตามแนวทางหรือวิธีการที่ถูกกำหนดไว้ก่อนล่วงหน้า) หากแต่กิจกรรมการเรียนรู้ความมีความซับซ้อนไว้ระดับหนึ่ง ทั้งนี้เพื่อให้นักเรียนได้ฝึกคิดลงมือปฏิบัติ อภิปราย และให้เหตุผลเช่นเดียวกับการทำางานของนักวิทยาศาสตร์ โดยทุกกิจกรรมการเรียนรู้เหล่านี้ เริ่มต้นด้วยสถานการณ์ที่ก่อให้เกิดคำถามทางวิทยาศาสตร์ เพื่อให้นักเรียนทำการได้ (เช่น การออกแบบการสืบเสาะทางวิทยาศาสตร์ การทำการทดลองทางวิทยาศาสตร์ การจัดทำ และวิเคราะห์ข้อมูล การลงข้อสรุปและสร้างคำอธิบาย และการได้แจ้งเพื่อหาข้อสรุปที่น่าเชื่อถือที่สุด) เพื่อตอบคำถามทางวิทยาศาสตร์นั้นด้วยข้อมูลหรือหลักฐาน (ทั้งที่เป็นปฐมภูมิและทุติยภูมิ) ทั้งนี้เพื่อการสืบเสาะทางวิทยาศาสตร์ได้ เริ่มต้น และขับเคลื่อนด้วยคำถามทางวิทยาศาสตร์ (Lederman et al., 2014)

กิจกรรมการเรียนรู้ที่เน้นการสืบเสาะทางวิทยาศาสตร์ มีทั้งสิ้น 6 กิจกรรม ได้แก่ (1) กิจกรรมเรื่อง “ภาวะโลกร้อน” (2) กิจกรรมเรื่อง “ไขปริศนาภินิษฐ์” (3) กิจกรรมเรื่อง “กำเนิดดวงจันทร์” (4) กิจกรรมเรื่อง “น้ำขึ้นน้ำลง” (5) กิจกรรมเรื่อง “ทำไม้จน ทำไม้ลอย” และ (6) กิจกรรมเรื่อง “ปริมาตรหายไปไหน” โดยทุกกิจกรรมการเรียนรู้เหล่านี้ สอดคล้องกับตัวชี้วัดและสาระการเรียนรู้แกนกลาง ตามหลักสูตรวิทยาศาสตร์แกนกลางการศึกษาขั้นพื้นฐาน (สำนักวิชาการและมาตรฐานการศึกษา, 2553) แต่ละกิจกรรมจะท่อนการทำงานของนักวิทยาศาสตร์ อาทิ การออกแบบการสืบเสาะทางวิทยาศาสตร์ การปฏิบัติการทดลองทางวิทยาศาสตร์ การจัดทำและวิเคราะห์ข้อมูลทางวิทยาศาสตร์ การโน้มน้าว และได้แจ้งทางวิทยาศาสตร์ และการสร้างแบบจำลองทางวิทยาศาสตร์ยังไปกว่านั้น กิจกรรมการเรียนรู้ส่วนใหญ่จึงการทำงานที่แท้จริงของนักวิทยาศาสตร์ในอดีต รายละเอียดของแต่ละกิจกรรมมีดังนี้

กิจกรรมเรื่อง “ภาวะโลกร้อน” สอดคล้องกับตัวชี้วัด

ในระดับชั้นมัธยมศึกษาปีที่ 1 ซึ่งกล่าวไว้ว่า “(นักเรียน)สืบค้นวิเคราะห์และอธิบายปัจจัยทางธรรมชาติและการกระทำของมนุษย์ที่มีผลต่อการเปลี่ยนแปลงอุณหภูมิของโลก ...” (สำนักวิชาการและมาตรฐานการศึกษา, 2553, หน้า 79) กิจกรรมนี้เน้นให้นักเรียนได้ฝึกคิดเพื่อออกแบบการทดลองทางวิทยาศาสตร์ ด้วยตนเอง ตลอดจนประเมินและวิพากษ์ผลการทดลองและวิธีการทดลองของผู้อื่น โดยการให้นักเรียนชุมนุมทีมกันแล้วกับกิจกรรมการศึกษาปริมาณน้ำตอนได้ออกใช้คิดในสถานที่ที่นักเรียนได้สำรวจและสอดรับกับอุณหภูมิเฉลี่ยของโลกที่มีแนวโน้มเพิ่มขึ้น เช่นกัน อย่างไรก็ได้ วิธีทัศน์นี้ได้แสดงข้อมูลในบางปีว่า แม้ปริมาณน้ำตอนได้เพิ่มขึ้น แต่อุณหภูมิเฉลี่ยของโลกกลับไม่เพิ่มขึ้น นักเรียนจึงได้รับมอบหมายให้ออกแบบการทดลองเพื่อตอบคำถามทางวิทยาศาสตร์ว่า ปริมาณน้ำตอนได้ออกใช้คิดในสถานที่ที่มีอุณหภูมิของอากาศที่ได้รับแสงเพิ่มขึ้นเร็วกว่าปกติหรือไม่ โดยนักเรียนต้องนำเสนองานออกแบบการทดลองของตนเอง และวิพากษ์การออกแบบการทดลองของผู้อื่น

กิจกรรมเรื่อง “ไขปริศนาภินิษฐ์” สอดคล้องกับตัวชี้วัดในระดับชั้นมัธยมศึกษาปีที่ 3 ซึ่งกำหนดให้นักเรียนเข้าใจว่า การเปลี่ยนแปลงทางสิ่งแวดล้อม (เช่น การตัดไม้ทำลายป่า และการใช้สารเคมี) “เป็นสาเหตุหนึ่งที่ทำให้เกิดการสูญเสียความหลากหลายทางชีวภาพ” (สำนักวิชาการและมาตรฐานการศึกษา, 2553, หน้า 27) กิจกรรมนี้เน้นให้นักเรียนได้ฝึกพิจารณาหลักฐานและลงข้อสรุปบนพื้นฐานของหลักฐาน ตลอดจนนำข้อสรุปต่างๆ ที่เกี่ยวข้องกันมาซึ่อมโยงและสร้างเป็นคำอธิบายประกอบการณ์ทางธรรมชาติ ในการนี้ นักเรียนต้องพิจารณาหลักฐาน จำนวน 9 ข้อ เพื่อลงข้อสรุปและสร้างคำอธิบายที่ตอบคำถามทางวิทยาศาสตร์ที่ว่า ภัยแล้งส่งผลต่อความหลากหลายทางพันธุกรรมของนกพินช์หรือไม่ อย่างไรก็ตาม นักเรียนนำคำอธิบายนี้ไปอธิบายประกอบการณ์การเปลี่ยนแปลงทางสิ่งแวดล้อมอื่นๆ (เช่น การตัดไม้ทำลายป่า และการใช้สารเคมี) ส่งผลต่อความหลากหลายทางชีวภาพในท้องถิ่นของตนเอง

กิจกรรมเรื่อง “กำเนิดดวงจันทร์” สอดคล้องกับตัวชี้วัดในระดับชั้นมัธยมศึกษาปีที่ 3 ซึ่งกล่าวไว้ว่า “ดวงอาทิตย์โลก และดวงจันทร์เป็นระบบได้ภายในนิ่มคล่อง” และ “แรงโน้มถ่วงระหว่างโลกกับดวงจันทร์ทำให้ดวงจันทร์โคจรรอบโลก แรงโน้มถ่วงระหว่างดวงอาทิตย์กับบริวารทำให้มีวิวารเกลื่อนร้อนของดวงอาทิตย์...” (สำนักวิชาการและมาตรฐาน

การศึกษา, 2553, หน้า 89) กิจกรรมนี้เน้นให้นักเรียนได้ฝึกโน้มน้าวและได้เขียงทางวิทยาศาสตร์ โดยการนำเสนอข้อถกเถียงของนักวิทยาศาสตร์ในปัจจุบันเกี่ยวกับการเกิดความขั้นที่ ซึ่งประกอบด้วย 4 ทฤษฎี ในกรณีนี้ นักเรียนต้องพิจารณาหลักฐานจำนวน 7 ชิ้น เพื่อประเมินและอภิปรายร่วมกันว่า หลักฐานเหล่านี้สนับสนุนหรือไม่ สนับสนุนแต่ละทฤษฎีอย่างไรบ้าง และทฤษฎีใดได้รับการสนับสนุนจากหลักฐานเหล่านี้มากที่สุด ในท้ายที่สุด นักเรียนต้องลงคะแนนเพื่อหาข้อสรุปร่วมกันว่า ทฤษฎีใดสมควรได้รับการยอมรับในทางวิทยาศาสตร์มากที่สุด จากนั้น นักเรียนทำการทดลองเสมอือนจริงด้วยโปรแกรมคอมพิวเตอร์ เพื่อศึกษาแรงโน้มถ่วงระหว่างโลกและดวงจันทร์ และแรงโน้มถ่วงระหว่างดวงอาทิตย์และโลก

กิจกรรมเรื่อง “น้ำขึ้นน้ำลง” สอนคล้องกับตัวชี้วัดในระดับชั้นมัธยมศึกษาปีที่ 3 ซึ่งกล่าวไว้ว่า “แรงโน้มถ่วงที่ดวงจันทร์(และ)ดวงอาทิตย์กระทำต่อโลกทำให้เกิดปรากฏการณ์น้ำขึ้นน้ำลง ซึ่งส่งผลต่อสิ่งแวดล้อมและสิ่งมีชีวิตบนโลก” (สำนักวิชาการและมาตรฐานการศึกษา, 2553, หน้า 89) กิจกรรมนี้เน้นให้นักเรียนได้ฝึกจัดกระทำและวิเคราะห์ข้อมูลที่มีจำนวนมากและซับซ้อน เพื่อสร้างความหมายที่แฝงอยู่ในข้อมูลเหล่านี้ โดยการให้นักเรียนวิเคราะห์ข้อมูลระดับน้ำหนาของกระบวนการอุทกศาสตร์ โดยการเขียนกราฟด้วยมือเพื่อตอบคำถามว่า น้ำขึ้นสูงสุดและน้ำลงต่ำสุด (เมื่อเทียบกับช่วงเวลาใกล้เคียง) เกิดขึ้นกี่ครั้งใน 1 วัน จากนั้น นักเรียนต้องพิจารณาว่าปรากฏการณ์น้ำขึ้นน้ำลงเกี่ยวข้องกับปรากฏการณ์ข้างขึ้นข้างลงหรือไม่ และหลักฐานอะไรที่สนับสนุนความเชื่อข้างต้นนี้ ในกรณีนี้ นักเรียนต้องวิเคราะห์ข้อมูลระดับน้ำหนาที่ร่วมกับข้อมูลลักษณะของดวงจันทร์ในช่วงเวลาเดียวกัน เพื่อหาหลักฐานว่า ปรากฏการณ์ที่ส่องมีแบบแผนที่คล้ายคลึงกันหรือไม่ โดยการใช้โปรแกรมประมวลผลข้อมูล (เช่น MS Excel)

กิจกรรมเรื่อง “ทำไม้จน ทำไม้ลอย” สอนคล้องกับตัวชี้วัดในระดับชั้นมัธยมศึกษาปีที่ 3 ซึ่งกล่าวไว้ว่า “(นักเรียน)ทดลองและอธิบายแรงพุ่งของของเหลวที่กระทำต่อวัตถุ” (สำนักวิชาการและมาตรฐานการศึกษา, 2553, หน้า 58) กิจกรรมนี้เน้นให้นักเรียนได้ฝึกอุปกรณ์และทำการทดลองทางวิทยาศาสตร์ด้วยโปรแกรมคอมพิวเตอร์เสมอือนจริง กิจกรรมเริ่มด้วยการให้นักเรียนทำนายว่า วัตถุต่างๆ จะจมหรือลอยในน้ำ พร้อมทั้งตั้งสมมติฐานว่า สมบัติใดที่ทำให้บางวัตถุจมน้ำและบางวัตถุอยู่น้ำ ซึ่งอาจเป็นมวลของวัตถุ ปริมาตรของวัตถุ และชนิดวัสดุของวัตถุ จากนั้น นักเรียนทำการทดลองด้วยโปรแกรมคอมพิวเตอร์เพื่อยืนยันหรือหัก

ล้างสมมติฐานนั้น จากนั้น นักเรียนใช้โปรแกรมคอมพิวเตอร์เพื่อศึกษาต่อไปว่า สมบัติของวัตถุเหล่านี้เกี่ยวข้องกันหรือไม่ จนกระทั่งนักเรียนเข้าใจแนวคิดเรื่องความหนาแน่นของวัตถุ และ นักเรียนใช้โปรแกรมคอมพิวเตอร์เพื่อศึกษาต่อไปว่า (1) ความหนาแน่นของวัตถุเกี่ยวข้องกับการจำลองของวัตถุในน้ำหรือไม่ และ (2) ความหนาแน่นของของเหลวเกี่ยวข้องกับการจำลองของวัตถุใดๆ ในของเหลวนั้นหรือไม่ จนกระทั่งนักเรียนเข้าใจว่า ความหนาแน่นสัมพัทธ์ระหว่างวัตถุและของเหลวเป็นตัวกำหนดว่า วัตถุนั้นจะจมหรือจะลอยในของเหลวนั้น จากนั้น นักเรียนเรียนรู้เกี่ยวกับแนวคิดเรื่องแรงพุ่งและน้ำหนักของวัตถุ พร้อมทั้งศึกษาด้วยโปรแกรมคอมพิวเตอร์ว่า แรงพุ่งและน้ำหนักของวัตถุเกี่ยวข้องกับการจำลองของวัตถุหรือไม่

กิจกรรมเรื่อง “ปริมาตร hairy ไปไหน” สอนคล้องกับตัวชี้วัดในระดับชั้นมัธยมศึกษาปีที่ 1 ซึ่งกล่าวไว้ว่า “เมื่อสาร... เกิดการละลาย มวลของสารจะไม่เปลี่ยนแปลง แต่สมบัติทางกายภาพ (ช่น ปริมาตรของสาร) เปเปลี่ยนแปลง...” (สำนักวิชาการและมาตรฐานการศึกษา, 2553, หน้า 48) กิจกรรมนี้เน้นให้นักเรียนได้เข้าใจว่า การทดลองทางวิทยาศาสตร์มักเริ่มต้นจากข้อสงสัยและการคาดเดาคำตอบเกี่ยวกับปรากฏการณ์ทางธรรมชาติ ซึ่งตามมาด้วยการออกแบบการศึกษาเพื่อตรวจสอบว่า คำตอบจากการคาดเดาเป็นไปได้หรือไม่ หากคำตอบนั้นได้รับการสนับสนุนจากหลักฐาน (ผลการทดลอง) คำตอบนั้นก็ได้รับการยอมรับมากขึ้น แต่หากคำตอบนั้นไม่ได้รับการสนับสนุนด้วยหลักฐาน คำตอบนั้นก็อาจถูกเพิกเฉยและถูกทิ้งไปในที่สุด กิจกรรมเริ่มด้วยการให้นักเรียนทำนายว่า เมื่อผสมน้ำที่มีปริมาตร 50 ลูกบาศก์เซนติเมตร กับแอลกอฮอล์ที่มีปริมาตร 50 ลูกบาศก์เซนติเมตร ปริมาตรรวมของของเหลวผสมจะเป็นเท่าใด จากนั้น นักเรียนจะทราบจากการสาขิดว่า ปริมาตรรวมของของเหลวผสมจะมีปริมาตรน้อยกว่า 100 ลูกบาศก์เซนติเมตร ในกรณีนี้ นักเรียนต้องเสนอคำอธิบายว่า ปริมาตรของของเหลวผสมนั้นหายไปไหน โดยนักเรียนบางคนคิดว่า ปริมาตรของน้ำและ/หรือของแอลกอฮอล์หายไป ซึ่งอาจเกิดจากการหลีกเลี่ยงในระหว่างการผสม ในขณะที่นักเรียนบางคนว่า ปริมาตรของน้ำและของแอลกอฮอล์ไม่หายไปไหน แต่เป็นเพราะสาเหตุอื่น (นั่นคือ การละลายระหว่างน้ำและแอลกอฮอล์) ในกรณีนี้ นักเรียนต้องออกแบบและทำการทดลองเพื่อหาหลักฐานที่สนับสนุนความคิดของตนเอง และ/หรือหักล้างความคิดของผู้อื่น ในกรณีนี้ นักเรียนได้ใช้เครื่องมือทางวิทยาศาสตร์จริง เช่น บีกเกอร์ กระบอกดูง

แท่งแก้วคนสาร และเครื่องชั่งสาร จานกระทั้งนักเรียนเข้าใจว่า แม้ปริมาตรของของเหลวผสมลดลง (เมื่อเทียบกับผลรวม ระหว่างปริมาตรเดิมของน้ำและปริมาตรเดิมของแอลกอฮอล์) แต่ปริมาณของน้ำและของแอลกอฮอล์ไม่ได้หายไปไหน ซึ่ง เป็นสมบัติหนึ่งของการละลายของสาร ในกรณีนี้ นักเรียนได้ใช้ แบบจำลองโดยการผสมผงเกลือละเดียดกับเมล็ดถั่วเขียว เพื่อ อธิบายปริมาตรที่ลดลงของของเหลวผสม

วิธีวิจัย

การวิจัยครั้งนี้เป็นการวิจัยเชิงทดลองเบื้องต้น (Pre-Experimental Design) ในรูปแบบของการทดสอบก่อนและ หลังการทำกิจกรรมการเรียนรู้ด้วยการสืบเสาะทาง วิทยาศาสตร์กับครุยและศึกษานิเทศก์ผู้เข้ารับการอบรมเพียง กลุ่มเดียว (One-Group Pretest-Posttest Design) การอบรมเชิง ปฏิบัติการเพื่อยาปลูกกิจกรรมการเรียนรู้ด้วยการสืบเสาะทาง วิทยาศาสตร์ใช้เวลา 4 วัน ในช่วงเดือนกันยายน พ.ศ. 2557 ณ โรงเรียนแห่งหนึ่งในจังหวัดสงขลา ผู้เข้ารับการอบรมประกอบ ด้วยครุวิทยาศาสตร์และศึกษานิเทศก์วิทยาศาสตร์ รวม 72 คน ซึ่งเป็นตัวแทนจากสำนักงานเขตพื้นที่การศึกษาในพื้นที่ภาค ใต้ จำนวน 36 เขต (เขตละ 2 คน) ทั้งนี้เพื่อเรียนรู้และนำ กิจกรรมการเรียนรู้เหล่านี้ไปเผยแพร่กับครุวิทยาศาสตร์คน อื่นๆ ในเขตพื้นที่การศึกษาของตนเองต่อไป โดยผู้เข้ารับการ อบรมเหล่านี้ส่วนใหญ่เป็นตัวแทนของสำนักงานเขตพื้นที่การ ศึกษาประมาณศึกษา (จำนวน 60 คน จาก 30 เขต) ในขณะที่ส่วน น้อยเป็นตัวแทนของสำนักงานเขตพื้นที่การศึกษามัธยมศึกษา (จำนวน 12 คน จาก 6 เขต)

การอบรมเชิงปฏิบัติการนี้เริ่มต้นด้วยการบรรยายหลัก การและเหตุผลของโครงการ โดยผู้วิจัย จากนั้น ผู้เข้ารับการ อบรมทำแบบทดสอบการรู้วิทยาศาสตร์ชุดที่ 1 ต่อมา ผู้เข้ารับ การอบรมทำกิจกรรมการเรียนรู้ต่างๆ ตามลำดับ โดยแต่ละ กิจกรรมใช้เวลาประมาณ 3–5 ชั่วโมง ในกรณีนี้ ผู้เข้ารับการ อบรมแสดงบทบาทสมมติเป็นนักเรียน ในขณะที่วิทยากร (คณะผู้พัฒนากิจกรรม) และคงบทบาทสมมติเป็นครุ ช่วง สุดท้ายของการอบรมเชิงปฏิบัติการเป็นการกล่าวสรุปโดยผู้ วิจัยเกี่ยวกับการนำกิจกรรมเหล่านี้ไปขยายผลกับนักเรียน ซึ่ง ตามด้วยการให้ผู้เข้ารับการอบรมทำแบบทดสอบการรู้ วิทยาศาสตร์อีกชุดหนึ่ง เนื่องจากการเก็บข้อมูลเกิดขึ้นในช่วง เวลาแตกต่างกัน ดังนั้น ผู้เข้าร่วมการอบรมที่ทำการทดสอบ การรู้วิทยาศาสตร์แต่ละครั้ง (รวมทั้งที่ทำและส่งคืน

แบบสอบถามความคิดเห็นเกี่ยวกับการเรียนรู้แต่ละกิจกรรม) จึงมีจำนวนแตกต่างกัน

เครื่องมือในการทดสอบการรู้วิทยาศาสตร์ในภาระวิชัย นี้เป็นมาจากการรู้วิทยาศาสตร์สำหรับนักเรียน ชั้นมัธยมศึกษาตอนต้นในงานวิจัยของ Fives et al. (2014) ซึ่ง ประกอบด้วย 2 ชุด ที่ผ่านการทดสอบแล้วว่ามีความเท่าเทียม กัน แบบทดสอบแต่ละชุดประกอบด้วยข้อสอบแบบเลือกตอบ 4 ตัวเลือก จำนวน 26 ข้อ ซึ่งวัดการรู้วิทยาศาสตร์ด้านต่างๆ ได้แก่ (1) ความเข้าใจเกี่ยวกับบทบาท หน้าที่ และขอบเขตของ วิทยาศาสตร์ (2) ความเข้าใจการคิดและการปฏิบัติทาง วิทยาศาสตร์ (3) ความเข้าใจความสัมพันธ์ระหว่างวิทยาศาสตร์ และสังคม (4) ความเข้าใจทางวิทยาศาสตร์ตามที่ปรากฏในสื่อ ต่างๆ และ (5) การใช้คณิตศาสตร์ในทางวิทยาศาสตร์ แบบ ทดสอบชุดที่ 1 ใช้ในการทดสอบ “ก่อน” การทำกิจกรรมการ เรียนรู้ ในขณะที่แบบทดสอบชุดที่ 2 ใช้ในการทดสอบ “หลัง” การทำกิจกรรมการเรียนรู้ผู้เข้ารับการอบรมใช้เวลาประมาณ 30–40 นาที ในทำแบบทดสอบแต่ละชุด ผู้วิจัยวิเคราะห์ข้อมูล ด้วยโปรแกรมคอมพิวเตอร์ในการหาค่าเฉลี่ย (\bar{X}) ค่าส่วนเบี่ยง เบนมาตรฐาน (SD) และการเปรียบเทียบค่าเฉลี่ยโดยการ ทดสอบค่า t

ผลการวิจัย

ผู้เข้ารับการอบรมเพียง 55 คน ยังดีส่งข้อมูลส่วนตัว ให้กับผู้วิจัย ซึ่งเป็นเพศชาย จำนวน 12 คน (21.82%) เพศหญิง จำนวน 41 คน (74.55%) และไม่ระบุเพศอีก 2 คน (3.64%) ใน จำนวน 55 คนนี้ ผู้เข้ารับการอบรมมีอายุ 30 ปีหรือน้อยกว่า จำนวน 6 คน (10.91%) มีอายุ 31–40 ปี จำนวน 20 คน (36.36%) และมีอายุ 41–50 ปี จำนวน 16 คน (29.09%) และมีอายุ 51 ปีขึ้นไป จำนวน 13 คน (23.64%) และ ผู้เข้ารับการอบรมเป็นครูผู้ช่วย จำนวน 1 คน (1.82%) เป็นครูหรือศึกษานิเทศก์ปฏิบัติการ จำนวน 13 คน (23.64%) เป็นครูหรือศึกษานิเทศก์ชั้นมัธยม การ จำนวน 19 คน (34.55%) และเป็นครูหรือศึกษานิเทศก์ชั้นมัธยม การพิเศษ จำนวน 20 คน (36.36%) ส่วนอีก 2 คน (3.64%) ไม่ ระบุวิทยาศาสตร์ ผู้เข้ารับการอบรมเกือบสามในห้า (58.18%) ไม่ เคยได้รับการอบรมเกี่ยวกับการจัดการเรียนการสอนด้วยการ สืบเสาะทางวิทยาศาสตร์มาก่อน ในขณะที่ผู้เข้ารับการอบรม อีกจำนวน 23 คน (41.82%) เคยผ่านการอบรมเกี่ยวกับการ จัดการเรียนการสอนด้วยการสืบเสาะทางวิทยาศาสตร์มาก่อน แล้ว

ผู้เข้ารับการอบรมที่ทำแบบทดสอบการรู้วิทยาศาสตร์ “ก่อน” และ “หลัง” การทำกิจกรรมการเรียนรู้ด้วยการสื่อเสาะทางวิทยาศาสตร์มีจำนวน 72 คน (100%) และ 65 คน (90.3%) ตามลำดับ ทั้งนี้ เพราะผู้เข้ารับการอบรมบางส่วนปฏิเสธการทำแบบทดสอบหรือเดินทางกลับทันทีที่ทำการทำกิจกรรมทั้งหมด เสร็จสิ้น ดังนั้น ผู้วิจัยจึงนำข้อมูลเฉพาะของผู้ที่ทำแบบทดสอบทั้ง “ก่อน” และ “หลัง” การอบรมมาวิเคราะห์ท่านั้น (65 คน) ผลการวิจัยมีดังต่อไปนี้

วัตถุประสงค์ที่ 1: เปรียบเทียบการรู้วิทยาศาสตร์ของครู “ก่อน” และ “หลัง” การเรียนรู้ด้วยกิจกรรมการสื่อเสาะทางวิทยาศาสตร์

ครูที่ทำแบบทดสอบการรู้วิทยาศาสตร์ทั้ง “ก่อน” และ “หลัง” การทำกิจกรรมการเรียนรู้ด้วยการสื่อเสาะทางวิทยาศาสตร์มีจำนวนทั้งสิ้น 45 คน โดยครูเหล่านี้ทำคะแนนเฉลี่ย “ก่อนการอบรม” ได้ 18.38 คะแนน (70.7%, SD = 3.26) และทำคะแนนเฉลี่ย “หลังการอบรม” ได้ 20.22 (77.8%, SD = 2.53) ในขณะที่ผลจากการทดสอบค่าเฉลี่ยข้อมูล 2 ชุดที่ สัมพันธ์กัน (Paired-samples t-test) ปรากฏว่า คะแนนเฉลี่ย “หลังการอบรม” แตกต่างจากคะแนนเฉลี่ย “ก่อนการอบรม” อย่างมีนัยสำคัญทางสถิติที่ระดับ 0.1 (ตารางที่ 2) โดย ศึกษานิเทศก์เหล่านี้ทำคะแนนเฉลี่ย “หลังการอบรม” ได้สูง กว่าคะแนนเฉลี่ย “ก่อนการอบรม”

วัตถุประสงค์ที่ 2: เปรียบเทียบการรู้วิทยาศาสตร์ของศึกษานิเทศก์ “ก่อน” และ “หลัง” การเรียนรู้ด้วยกิจกรรมการสื่อเสาะทางวิทยาศาสตร์

ศึกษานิเทศก์ที่ทำแบบทดสอบการรู้วิทยาศาสตร์ทั้ง “ก่อน” และ “หลัง” การทำกิจกรรมการเรียนรู้ด้วยการสื่อเสาะทางวิทยาศาสตร์มีจำนวนทั้งสิ้น 20 คน โดยศึกษานิเทศก์เหล่านี้ ทำคะแนนเฉลี่ย “ก่อนการอบรม” ได้ 16.65 คะแนน (64.0%, SD = 4.54) และทำคะแนนเฉลี่ย “หลังการอบรม” ได้ 19.55 (75.2%, SD = 3.65) ในขณะที่ผลจากการทดสอบค่าเฉลี่ยข้อมูล 2 ชุดที่ สัมพันธ์กัน (Paired-samples t-test) ปรากฏว่า คะแนนเฉลี่ย “หลังการอบรม” แตกต่างจากคะแนนเฉลี่ย “ก่อนการอบรม” อย่างมีนัยสำคัญทางสถิติที่ระดับ 0.01 (ตารางที่ 2) โดย ศึกษานิเทศก์เหล่านี้ทำคะแนนเฉลี่ย “หลังการอบรม” ได้สูง กว่าคะแนนเฉลี่ย “ก่อนการอบรม”

บทสรุปและการอภิปรายผล

จากการวิเคราะห์คะแนนที่ผู้เข้าร่วมการอบรมเชิงปฏิบัติการทำใบแบบทดสอบการรู้วิทยาศาสตร์ ผลการวิจัย ปรากฏว่า (1) ครูที่ทำคะแนนเฉลี่ย “หลังการอบรม” ได้สูงกว่า คะแนนเฉลี่ย “ก่อนการอบรม” อย่างมีนัยสำคัญทางสถิติที่ ระดับ 0.1 และ (2) ศึกษานิเทศก์ทำคะแนนเฉลี่ย “หลังการอบรม” ได้สูงกว่า คะแนนเฉลี่ย “ก่อนการอบรม” อย่างมีนัย

ตารางที่ 1 ผลการทดสอบค่า t ระหว่างคะแนนเฉลี่ยของครู “ก่อน” และ “หลัง” การอบรม

คะแนน	n	\bar{x}	SD	t	p	(n = 45)
ก่อนการอบรม	45	18.38	3.263	-3.762	.000	
หลังการอบรม	45	20.22	2.531			

ตารางที่ 2 ผลการทดสอบค่า t ระหว่างคะแนนเฉลี่ยของศึกษานิเทศก์ “ก่อน” และ “หลัง” การอบรม

คะแนน	n	\bar{x}	SD	t	p	(n = 20)
ก่อนการอบรม	20	16.65	4.545	-3.067	.006	
หลังการอบรม	20	19.55	3.649			

สำคัญทางสกิดิที่ระดับ .01 ผลการวิจัยนี้แสดงว่า กิจกรรมการเรียนรู้ด้วยการสืบเสาะทางวิทยาศาสตร์ ที่พัฒนาขึ้นตามแนวทางของ Chinn and Malhotra (2002) สามารถพัฒนาการรู้วิทยาศาสตร์ของผู้เข้ารับการอบรมได้ ทั้งนี้เพราความสามารถในการสืบเสาะทางวิทยาศาสตร์ (ทักษะการลงมือปฏิบัติ ด้วยตนเอง และการประเมินผลงานของผู้อื่น) เป็นองค์ประกอบหนึ่งของการเป็นผู้รู้วิทยาศาสตร์ (OECD, 2013)

การเพิ่มขึ้นของคะแนนการรู้วิทยาศาสตร์เกิดจากกิจกรรมการสืบเสาะทางวิทยาศาสตร์ที่มุ่งเน้นให้ผู้เข้ารับการอบรมได้คิด ปฏิบัติ และอภิปรายร่วมกันเพื่อตอบคำถามทางวิทยาศาสตร์ด้วยตนเอง (Chinn & Malhotra, 2002) โดยปราศจากการระบุวิธีการไว้ก่อนล่วงหน้า ไม่ว่าจะเป็นการออกแบบการทดลองทางวิทยาศาสตร์ในกิจกรรมเรื่อง “ภาวะโลกร้อน” “ทำไม่จน ทำไม่พอ” และ “ปริมาตรหายไปไหน” ซึ่งช่วยสร้างความเข้าใจเกี่ยวกับการปฏิบัติงานทางวิทยาศาสตร์ (เช่น การกำหนดตัวแปร การจัดกระทำตัวแปร และการควบคุมตัวแปร) การตีความหมายหลักฐานทางวิทยาศาสตร์ในกิจกรรมเรื่อง “ไขปริศนาภูพินช์” ซึ่งช่วยสร้างความระมัดระวังในการลงข้อสรุปที่ถูกต้องโดยอ้างอิง จริง การได้แบ่งกันด้วยหลักฐานจำกัดที่ปราบภัยในสื่อต่าง ๆ ภายใต้กรอบแนวคิดทางทฤษฎีที่แตกต่างกันในกิจกรรมเรื่อง “กำหนดดวงจันทร์” ซึ่งช่วยสร้างความตระหนักถึงข้อจำกัดหรือขอบเขตของวิทยาศาสตร์ และการจัดกระทำข้อมูลที่ซับซ้อนในกิจกรรมเรื่อง “น้ำขึ้น น้ำลง” ซึ่งช่วยฝึกทักษะการใช้วิธีการทางคณิตศาสตร์ในการทำงานทางวิทยาศาสตร์ เป็นต้น

ผลการวิจัยนี้สอดคล้องกับการวิจัยของ Bunterm, Lee, Kong, Rattanavongsa, and Rachahoon (2014) ซึ่งทำการเปรียบเทียบผลการเรียนรู้วิทยาศาสตร์ของนักเรียน 2 กลุ่ม ระหว่างกลุ่มที่เรียนรู้ด้วยการสืบเสาะแบบมีโครงสร้าง (structured inquiry) และกลุ่มที่เรียนรู้ด้วยการสืบเสาะภายใต้การแนะนำแนวทางโดยครู (guided inquiry) ผลการวิจัยปรากฏว่า นักเรียนกลุ่มหลังมีผลการเรียนรู้วิทยาศาสตร์ ทั้งในแง่ของความรู้ด้านเนื้อหา ทักษะกระบวนการ และเจตคติทางวิทยาศาสตร์ ที่ดีกว่านักเรียนกลุ่มแรก ทั้งนี้เพราขนาดนักเรียนกลุ่มหลังมีระดับการมีส่วนร่วมในกิจกรรมการเรียนรู้มากกว่า นักเรียนกลุ่มแรก ผลการวิจัยเช่นนี้สนับสนุนผลการวิเคราะห์ข้อมูลจากโครงสร้างการประเมินผลนักเรียนนานาชาติด้านการรู้วิทยาศาสตร์ในปี ก.ศ. 2006 โดย McConnet, Oliver, Woods-

Conney, Schibeci, and Maor (2014, p. 978) ที่ว่า “ไม่ใช่การสืบเสาะทั้งหมดที่ถูกสร้างขึ้นมาอย่างเที่ยมหัน” การเรียนรู้จาก การสืบเสาะควรเปิดโอกาสให้นักเรียนได้มีส่วนร่วมกับการตอบคำถามทางวิทยาศาสตร์ด้วยข้อมูลและหลักฐานทางวิทยาศาสตร์อย่างแท้จริง ไม่ใช่การปฏิบัติตามขั้นตอนต่าง ๆ ที่ถูกกำหนดไว้ล่วงหน้า

อย่างไรก็ได้ เนื่องจากงานวิจัยนี้ไม่ได้มีการวิเคราะห์คำตอบของผู้เข้ารับการอบรมเป็นรายคนและเป็นรายข้อ ผลการวิจัยนี้จึงยังไม่สามารถระบุได้อย่างชัดเจนว่า การเพิ่มขึ้นของคะแนนภาษาหลังจากการอบรมเชิงปฏิบัติการครั้งนี้เป็นการเพิ่มขึ้นของการรู้วิทยาศาสตร์ทุกด้าน บางด้าน หรือเพียงด้านใดด้านหนึ่งเท่านั้น งานวิจัยในอนาคตอาจช่วยสร้างความชัดเจนในประเด็นนี้มากขึ้น

อีกประเด็นจากการวิจัยครั้งนี้คือก่อนการอบรมศึกษานิเทศก์มีแนวโน้มทำคะแนนด้านการรู้วิทยาศาสตร์ได้ดีอย่างกว่าครูทั้ง ๆ ที่ศึกษานิเทศก์มีบทบาทในการแนะนำและช่วยเหลือครู อย่างไรก็ได้ ภาษาหลังจากการอบรม ความแตกต่างระหว่างคะแนนเฉลี่ยของครูและของศึกษานิเทศก์ลดลง (จาก 1.73 เหลือ 0.65) เนื่องจากงานวิจัยที่ศึกษาการรู้วิทยาศาสตร์ของศึกษานิเทศก์แบบไม่มีปราบภัย การศึกษาและพัฒนาการรู้วิทยาศาสตร์ของศึกษานิเทศก์จึงเป็นเรื่องที่น่าสนใจต่อไป

งานวิจัยนี้ได้แสดงให้เห็นว่า กิจกรรมการเรียนรู้ด้วยการสืบเสาะทางวิทยาศาสตร์สามารถช่วยพัฒนาการรู้วิทยาศาสตร์ของผู้เรียนได้ หากกิจกรรมเหล่านี้เปิดโอกาสให้ผู้เรียนได้ฝึกคิด ปฏิบัติ และอภิปรายร่วมกัน แทนการกำหนดวิธีการที่ผู้เรียนต้องปฏิบัติตามมาก่อนล่วงหน้า ดังนั้น ครูจึงควรได้รับการส่งเสริมและสนับสนุนให้จัดการเรียนการสอนวิทยาศาสตร์โดยการสืบเสาะทางวิทยาศาสตร์ตามแนวทางนี้อย่างแพร่หลายมากขึ้น โดยครูสามารถนำกิจกรรมในงานวิจัยนี้ไปประยุกต์ใช้กับนักเรียนของตนเองได้ ในขณะเดียวกันผู้วิจัยเห็นด้วยกับข้อเสนอแนะที่ว่า ครูควรมีส่วนร่วมในการออกแบบและพัฒนากิจกรรมการเรียนรู้ด้วยการสืบเสาะทางวิทยาศาสตร์ด้วยตนเอง (Keys & Bryan, 2001) ทั้นนี้เพราว่า การพัฒนากิจกรรมการเรียนรู้ เช่นนี้ให้กับครูเพื่อนำไปใช้กับนักเรียนนั้นเป็นเพียงการแก้ปัญหาระยะสั้นในช่วงแรก การพัฒนาที่ยั่งยืนจะเกิดขึ้นได้ ก็ต่อเมื่อครูสามารถพัฒนากิจกรรมการเรียนรู้ได้ด้วยตัวเอง ซึ่งจะส่งผลให้เกิดความสำเร็จในการปฏิรูปการจัดการเรียนการสอนวิทยาศาสตร์ในระยะยาว

เอกสารอ้างอิง

กาญจนา มหาดี และ ชาตรี ฝ่ายคำต้า. (2553). ความเข้าใจธรรมชาติวิทยาศาสตร์ของนักเรียนชั้นมัธยมศึกษาปีที่ 1. *วารสารสังขานครินทร์ ฉบับสังคมศาสตร์และมนุษยศาสตร์*, 16(5), 795–809.

กุศลิน นุสกุล. (2550). การเรียนการสอนโดยใช้ Scientific Inquiry. *นิตยสาร สสวท.*, 35(149), 36–37.

จีรวรรณ เกษสิงห์ และ วรรณพิพา รอดแรงคำ. (2553). กรณีศึกษาความเข้าใจและการปฏิบัติของครูวิทยาศาสตร์ในการจัดการเรียนการสอนแบบสืบเสาะหาความรู้. *วิทยาสารเกษตรศาสตร์ สาขาวิชสังคมศาสตร์*, 31(1), 1–16.

จีรวรรณ เกษสิงห์ และ วรรณพิพา รอดแรงคำ. (2554). การสอนวิทยาศาสตร์ที่เน้นการสืบเสาะหาความรู้. *วารสารมนุษยศาสตร์และสังคมศาสตร์ มหาวิทยาลัยมหาสารคาม*, 30(1), 84–105.

จุฬารัตน์ เลี้ยง ไกรภาค และ นฤมล ยุตาคม. (2553). กรณีศึกษา: การรับรู้เกี่ยวกับการจัดการเรียนการสอนแบบสืบเสาะและ การปฏิบัติการสอนของครูชีววิทยา. *วารสารมนุษยศาสตร์และสังคมศาสตร์ มหาวิทยาลัยมหาสารคาม*, 29(4), 23–37.

ชาตรี ฝ่ายคำต้า. (2551). การจัดการเรียนรู้ที่เน้นกระบวนการสืบเสาะหาความรู้. *วารสารศึกษาศาสตร์ มหาวิทยาลัยนเรศวร*, 11(1), 31–45.

ธิติยา บงกชเพชร และ วรรณพิพา รอดแรงคำ. (2553). ความรู้ ความเชื่อเกี่ยวกับการสอนดาราศาสตร์ที่เน้นกระบวนการสืบเสาะหาความรู้ของครูวิทยาศาสตร์ในระดับชั้นปีที่ 6. *วารสารมนุษยศาสตร์และสังคมศาสตร์ มหาวิทยาลัยมหาสารคาม*, 29(3), 85–97.

พงศ์ประพันธ์ พงษ์ไสว. (2552). สอนวิทยาศาสตร์อย่างที่วิทยาศาสตร์เป็น. *วารสารวิทยาศาสตร์*, 63(1), 84–89.

เยาวารศ ใจเย็น เพ็ญศรี บุญสรรค์ส่ง และ นฤมล ยุตาคม. (2550). ทักษะกระบวนการทางวิทยาศาสตร์ชั้นผู้เรียนในเรื่องสมดุลเคมีของนักเรียนระดับมัธยมศึกษาตอนปลาย จากโรงเรียนในจังหวัดจันทบุรี. *วิทยาสารเกษตรศาสตร์ สาขาวิชสังคมศาสตร์*, 28(1), 11–22.

ลือชา ลดชาติ และ โชคชัย ยืนยง. (2558). สิ่งที่ครูวิทยาศาสตร์ไทยควรเรียนรู้จากโครงการประเมินผลนักเรียนนานาชาติ. *วารสารปรัชญาศาสตร์ มหาวิทยาลัยทักษิณ*, 28(2), 108–137.

ศักดศรี สุภารต. (2554). กระบวนการสืบเสาะทางวิทยาศาสตร์ในทางทดลองเคนีระดับมัธยมศึกษาตอนปลาย: การ

ทบทวนงานวิจัยค้านวิทยาศาสตร์ศึกษาจากมหาวิทยาลัยอุบลราชธานี. *วารสารศึกษาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตปัตตานี*, 22(3), 331–343.

สถาบันทดสอบทางการศึกษาแห่งชาติ. (2555). สรุปผลวิเคราะห์ความสามารถของนักเรียน ป.6, ม.3, ม.6 จากคะแนน O-NET. ลีบคืนจาก http://www.niets.or.th/uploads/content_pdf/research_1347348621.pdf

สุทธิดา จำรัส นฤมล ยุตาคม และ พรทิพย์ ไชยโภ. (2552). ความเข้าใจธรรมชาติของวิทยาศาสตร์ของนักเรียน แผนการเรียนวิทยาศาสตร์ชั้นมัธยมศึกษาปีที่ 4. *วารสารวิชย มข.*, 14(4), 360–374.

สำนักวิชาการและมาตรฐานการศึกษา. (2553). ตัวชี้วัดและสาระการเรียนรู้แกนกลาง กลุ่มสาระการเรียนรู้วิทยาศาสตร์ ตามหลักสูตรแกนกลางการศึกษาขั้นพื้นฐาน พุทธศักราช 2551. กรุงเทพฯ: โรงพิมพ์ชุมนุมสหกรณ์การเกษตรแห่งประเทศไทย จำกัด.

อุษา นาคทอง รีราพร อนันตศรียูบุตร และ นฤมล ยุตาคม. (2552). ทักษะกระบวนการทางวิทยาศาสตร์ของนักเรียนชั้นมัธยมศึกษาปีที่ 4 ในเรื่องเซลล์และกระบวนการของเซลล์. *วารสารสังขานครินทร์ ฉบับสังคมศาสตร์และมนุษยศาสตร์*, 13(3), 383–394.

Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry. *Journal of Science Teacher Education*, 13(1), 1–12.

Bingle, W. H., & Gaskell, P. L. (1994). Scientific literacy for decision making and the social construction of scientific knowledge. *Science Education*, 78(2), 185–201.

Bunterm, T., Lee, K., Kong, J. N. L., Rattanavongsa, J., & Rachahoon, G. (2014). Do different levels of inquiry lead to different learning outcomes? A comparison between guided and structured inquiry. *International Journal of Science Education*, 36(12), 1937–1959.

Bybee, R. W., Taylor, J. A., Gardner, A., Scotter, P. V., Powell, J. C., Wesbrook, A., & Landes, N. (2006). *The BSCS 5E instructional model: Origin, effectiveness, and applications*. Retrieved from http://bscs.org/sites/default/files/_legacy/BSCS_5E_Instructional_ModelExecutive_Summary_0.pdf

Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. *Science Education*, 86(2), 175–218.

Dahsah, C., & Faikhamta, C. (2008). Science education in Thailand: Science curriculum reform in transition. In R. K. Coll & N. Taylor (Eds.), *Science education in context: An international examination of the influence of context on science curricula development and implementation* (pp. 291–300). Rotterdam, the Netherlands: Sense Publishers.

Fives, H., Huebner, W., Birnbaum, A. S., & Nicolich, M. (2014). Developing a measure of scientific literacy for middle school students. *Science Education*, 98(4), 549–580.

Hurd, P. D. (1998). Scientific literacy: New minds for a changing world. *Science Education*, 82(3), 407–416.

Keys, C. W., & Bryan, L. A. (2001). Co-constructing inquiry-based science with teachers: Essential research for lasting reform. *Journal of Research in Science Teaching*, 38(6), 631–645.

Kolsto, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socio-scientific issues. *Science Education*, 85(3), 291–310.

Laugksch, R. C. (2000). Scientific literacy: A conceptual overview. *Science Education*, 84(1), 71–94.

Lederman, J. S., Lederman, N. G., Bartos, S. A., Bartels, S. L., Meyer, A. A., & Schwartz, R. S. (2014). Meaningful assessment of learners' understandings about scientific inquiry—Theviews about scientific inquiry (VASI) questionnaire. *Journal of Research in Science Teaching*, 51(1), 65–83.

McConney, A., Oliver, M. C., Woods-McConnet, A., Schibeci, R., & Maor, D. (2014). Inquiry, engagement, and literacy in science: A retrospective, cross-national analysis using PISA 2006. *Science Education*, 98(6), 963–980.

Organisation for Economic Cooperation and Development. (2013). *PISA 2015: Draft science framework*. Retrieved from <http://www.oecd.org/pisa/pisaproducts/Draft%20PISA%202015%20Science%20Framework%20.pdf>

Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. *Science Education*, 66(2), 211–227.

Yuenyong, C., & Narjaikaew, P. (2009). Scientific literacy and Thailand science education. *International Journal of Environmental and Science Education*, 4(3), 335–349.

Translated Thai References

Bongkophet, T., & Roadrangka, V. (2010). Sixth grade science teachers' knowledge/belief of inquiry-based astronomy teaching. *Journal of Social Sciences and Humanities, Mahasarakham University*, 29(3), 85–97. [in Thai]

Bureau of Academic Affairs and Educational Standards. (2010). *Indicators and core learning content in science according to the 2008 national science curriculum standards*. Bangkok, Thailand: The Press of the Agricultural Co-operative Federation of Thailand. [in Thai]

Chaiyen, Y., Bunsawansong, P., & Yutakom, N. (2007). Integrated science process skills on chemical equilibrium of high school students from schools in Chanthaburi Province. *Kasetsart Journal: Social Sciences*, 28(1), 11–22. [in Thai]

Chamrat, S., Yutakom, N., & Chaiso, P. (2009). Grade 10 science students' understanding of the nature of science. *KKU Research Journal*, 14(4), 360–374. [in Thai]

Faikhamta, C. (2008). Inquiry-based teaching and learning. *Journal of Education, Naresuan University*, 11(1), 31–45. [in Thai]

Ketsing, J., & Roadrangka, V. (2010). A case study of science teachers' understanding and practice of inquiry-based instruction. *Kasetsart Journal: Social Sciences*, 31(1), 1–16. [in Thai]

Ketsing, J., & Roadrangka, V. (2011). Inquiry-based instruction for science teaching. *Journal of Social Sciences and Humanities, Mahasarakham University*, 30(1), 84–105. [in Thai]

Ladachart, L., & Yuenyong, C. (2015). What Thai science teachers should learn from the Programme for International Student Assessment. *Parichart Journal Thaksin University*, 28(2), 108–137. [in Thai]

Liangkrilas, J., & Yutakon, N. (2010). Case study: Perception among biological teachers of an inquiry-based approach to teaching and teaching practices. *Journal of Social Sciences and Humanities, Mahasarakham University*, 29(4), 23–37. [in Thai]

Mahalee, K., & Faikhamta, C. (2010). The seventh grade students' understandings of nature of science. *Songklanakarin Journal of Social Sciences and Humanities*, 16(5), 795–809. [in Thai]

Musikul, K. (2007). Teaching and learning through scientific inquiry. *IPST Journal*, 35(149), 36–37. [in Thai]

Nakthong, U., Anuntasethakul, T., & Yutakom, N. (2009). Science process skills of grade 10 students related to cells and cell processes. *Songklanakarin Journal of Social Science and Humanities*, 13(3), 383–394. [in Thai]

National Institute of Educational Testing Service. (2012). *Research and Academic*. Retrieved from http://www.niets.or.th/uploads/content_pdf/research_1347348621.pdf [in Thai]

Pongsophon, P. (2009). Teach science as science is. *Journal of Science*, 63(1), 84–89. [in Thai]

Supasorn, S. (2011). Science inquiry process in high school chemistry experiments: A review of science education research studies from UbonRatchathani University. *Journal of Education, Prince of Songkla University (Pattani Campus)*, 22(3), 331–343. [in Thai]