

การศึกษาความเป็นไปได้ของการประยุกต์เทคโนโลยีไฟฟ์โรไอลิซิส-แก๊สซิฟิเคชัน

มาใช้ในการกำจัดขยะมูลฝอยของชุมชน จังหวัดนนทบุรี

A Feasibility Study on the Application of Pyrolysis - Gasification

Technologies to Waste Disposal of Communities, Nonthaburi Province

บัชพล ทรงสุนทรวงศ์

ผู้ช่วยศาสตราจารย์ประจำสาขาวิชาวิทยาการจัดการ มหาวิทยาลัยสุโขทัยธรรมาธิราช

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาความเป็นไปได้ทางด้านเทคนิค และด้านการเงินของการนำเทคโนโลยีไฟฟ์โรไอลิซิส-แก๊สซิฟิเคชันมาใช้ในการกำจัดขยะมูลฝอยในจังหวัดนนทบุรี โดยทำการศึกษาด้านเทคนิคเกี่ยวกับปริมาณเชื้อเพลิง หรือขยะมูลฝอยที่สามารถนำมาเป็นเชื้อเพลิงในโครงการผลิตกระแสไฟฟ้าในช่วงระยะเวลา 25 ปี (พ.ศ. 2553 - พ.ศ. 2578) รวมทั้งศึกษาถึงกระบวนการผลิตและกำลังการผลิต และศึกษาด้านการเงินโดยการประเมินความคุ้มค่าของโครงการฯ ตามหลักเกณฑ์การตัดสินใจแบบคำนึงถึงมูลค่าของเงินในอนาคต ด้วยตัวชี้วัดความคุ้มค่าที่ประกอบด้วย มูลค่าปัจจุบันสุทธิ อัตราส่วนผลประโยชน์ต่อต้นทุน และอัตราผลตอบแทนภายในของโครงการ

ผลการวิจัยพบว่า โครงการฯ มีความเป็นไปได้ทางด้านเทคนิค เนื่องจากมีความเหมาะสมทางด้านสถานที่ตั้งและกระบวนการผลิต จากการคาดการณ์ปริมาณขยะมูลฝอยที่จะนำมาเป็นเชื้อเพลิงในการผลิตกระแสไฟฟ้าเริ่มต้นจากปี พ.ศ. 2554 จะมีประมาณ 336 ตัน/วัน หรือจำนวน 122,480 ตัน/ปี และจะมีปริมาณขยะมูลฝอยที่จัดเก็บได้ประมาณ 613 ตัน/วัน หรือจำนวน 223,618 ตัน/ปี จนถึงสุดโครงการในปี พ.ศ. 2578 ขยะมูลฝอยปริมาณดังกล่าวสามารถนำมาเป็นเชื้อเพลิงผลิตกระแสไฟฟ้าได้กำลังการผลิตจำนวน 3 - 5 เมกะวัตต์

ส่วนผลการวิเคราะห์ความเป็นไปได้ทางด้านการเงิน อัตราคิดลดของโครงการเท่ากับร้อยละ 10 โครงการฯ มีมูลค่าปัจจุบันสุทธิเท่ากับ 5,413.99 ล้านบาท อัตราส่วนผลประโยชน์ต่อต้นทุน เท่ากับ 3.40 เท่า ส่วนอัตราผลตอบแทนภายในของโครงการ เท่ากับร้อยละ 13.43 ซึ่งมีค่ามากกว่าอัตราผลตอบแทนภายในของหรือค่าเสียโอกาสของทุน ผู้ลงทุนจะได้รับผลตอบแทนทางการเงินคุ้มค่ากับการลงทุน และโครงการฯ มีความเหมาะสมสมกับการลงทุน

ข้อเสนอแนะจากการวิจัย คือ ปริมาณขยะมูลฝอยที่จัดเก็บได้ในจังหวัดนนทบุรีเหมาะสมสำหรับระบบกำจัดขยะแบบไฟฟ์โรไอลิซิส-แก๊สซิฟิเคชันที่มีกำลังการผลิตไฟฟ้า 3 - 5 เมกะวัตต์ หากใช้ระบบกำจัดที่มีกำลังการผลิตไฟฟ้ามากกว่านี้จะต้องหาเชื้อจากจังหวัดใกล้เคียงมาป้อนเข้าสู่ระบบ ซึ่งจะทำให้มีต้นทุนการผลิตสูงขึ้น ดังนั้นจึงควรให้ความสำคัญกับเรื่องปริมาณเชื้อเพลิงหรือขยะมูลฝอยที่จะนำมาใช้ด้วย

คำสำคัญ การศึกษาความเป็นไปได้ ไฟฟ์โรไอลิซิส-แก๊สซิฟิเคชัน จังหวัดนนทบุรี

Abstract

The purposes of this research were to conduct a feasibility study on the technical and financial aspects in applying Pyrolysis - Gasification Technologies to community waste disposal in Nonthaburi province. The study on the technical aspect focused on the process and capacity in generating the electricity from the waste for the period of 2010 - 2035, In terms of finance, discounting criterion was applied to appraise the cost-effectiveness of the project. Net Present Value (NPV), Benefit-Cost Ratio (BCR) and Internal Rate of Return (IRR) were used to be the indicators of cost-effectiveness.

The results of the study indicate that the technical aspect would be feasible due to the suitability of location and process. It is estimated that there will be 336 tons/day or 122,480 ton/year of waste to be used as fuel in the beginning of the project, in 2011 and the waste volumes will increase to 613 tons/day or 223,618 tons/day at the end of the project, in 2035. these can be used as fuel to generate 3-5 megawatt electricity.

In terms of financial analysis, it was found that the discounting criterion is 10 percent. The Net Present Value is about 5,413.99 million baht, and the Ratio of Benefit-Cost is 3.40, The Internal Rate of Return of the project was 13.43%, which is higher than the External Rate of Return or the Opportunity Cost. The rate of return is considerably worth investment; therefore, the project is suitable for investment.

It is recommended that the waste volume collected from Nonthaburi province boundaries will be suitable for Pyrolysis - Gasification system to generate 3-5 megawatt electricity. More waste volumes will be required for the system if there is a need to generate more electricity. This will result to be the higher cost as well. Therefore, the volumes of waste to be used as fuel should be significantly considered.

Keywords: Feasibility Study, Pyrolysis - Gasification, Nonthaburi Province

บทนำ

จังหวัดนนทบุรีเป็นจังหวัดหนึ่งที่รองรับการขยายตัวของโรงงานอุตสาหกรรม และการอยู่อาศัยของประชาชนที่หลังไหหลักน้ำเข้ามาทำงานในกรุงเทพมหานคร จำนวนประชากรที่เพิ่มขึ้นอย่างรวดเร็วนี้ ทำให้มีปริมาณขยะมูลฝอยเพิ่มมากขึ้นตามไปด้วย การกำจัดขยะมูลฝอยของจังหวัดนนทบุรีในขณะนี้ใช้วิธีการบนถ่ายจากอำเภอต่างๆ ไปไว้ยังแหล่งกำจัดขยะที่远离ลักษณะของ อำเภอไทรน้อย ในพื้นที่ ประมาณ 186 ไร่ มีองค์การบริหารส่วนจังหวัดนนทบุรี (อบจ.) เป็นผู้ดูแลซึ่งเป็นการกำจัดแบบกองทิ้งไว้กลางแจ้ง (Open Dump) และการฝังกลบ (Sanitary Landfill) การย่อยสลายต้องใช้เวลานานไม่ส่งผลกับปริมาณขยะมูลฝอยที่เพิ่มขึ้นทุกวัน

ปัจจุบันได้มีการพัฒนาเทคโนโลยีการเผาที่มีประสิทธิภาพสูงมาใช้ คือ เทคโนโลยีไฟฟ้า-แก๊สซิฟิเคชัน (Pyrolysis - Gasification Technology) ซึ่งมีค่าดำเนินการถูกกว่าวิธีการเผาในเตาเผา (Incineration) แต่อยู่ในขั้นของการพัฒนาในโรงงานอุตสาหกรรม อันจะนำมาซึ่งการแก้ปัญหาสิ่งแวดล้อม และสร้างรายได้จากการเปลี่ยนขยะพลาสติกและขยะอุตสาหกรรมให้เป็นกระแสไฟฟ้า ด้วยการป้อนขยะเข้าไปในส่วนของระบบไฟฟ้า-แก๊สซิฟิเคชัน ขยะจะถูกเผาโดยปราศจากออกซิเจนในระบบปิดภายในอุณหภูมิ 400 องศาเซลเซียส ทำให้ได้ผลิตภัณฑ์ที่เป็นก๊าซคาร์บอนมอนอกไซด์ ก๊าซมีเทน ไอ้น้ำมันร้อน และถ่าน จากนั้นจึงป้อนถ่านเข้าสู่ส่วนที่เป็นระบบแก๊สซิฟิเคชัน เกิดการเผาใหม่ภายใต้ปริมาณออกซิเจนที่จำกัด และอุณหภูมิมากกว่า 1,000 องศาเซลเซียส ทำให้เกิดการเผาใหม่แบบไม่สมบูรณ์ขึ้น ได้ผลิตภัณฑ์หลักเป็นก๊าซคาร์บอนมอนอกไซด์ ก๊าซมีเทน ก๊าซทัง 2 นี้ จะถูกส่งต่อ โดยนำมารวมกัน และแยกฝุ่นผงออก จากนั้นจึงใช้เป็นเชื้อเพลิงของเครื่องยนต์สันดาปภายใน ต่อพลาหนุนแกนของเครื่องปั่นไฟ ได้พลังงานไฟฟ้าขนาด 50 กิโลวัตต์ ส่วนความร้อนที่เหลืออีก 230 กิโลวัตต์ไว้ใช้ในโรงงานอุตสาหกรรมได้

ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลรัตนบุรี จังหวัดปทุมธานี ได้พัฒนาเทคโนโลยีไฟฟ้า-แก๊สซิฟิเคชันมาใช้ให้กับห้องขยะขึ้น หลังจากที่คิดค้น เครื่องยนต์แก๊สซิไฟแอร์ที่ใช้ถ่านไม้มาผลิตเป็นกระแสไฟฟ้าแทนน้ำมันเชื้อเพลิง ได้สำเร็จ แล้วได้ต่อยอดผลงานวิจัยและพัฒนาสู่นวัตกรรม โดยการสนับสนุนของสำนักงานนวัตกรรมแห่งชาติ (สนช.) กระทรวงวิทยาศาสตร์และเทคโนโลยี ไฟฟ้า

สำนักงานนวัตกรรมแห่งชาติได้ให้การสนับสนุนในลักษณะโครงการแปลงเทคโนโลยีเป็นทุน เป็นระยะเวลา 1 ปี 6 เดือน สนับสนุนงบประมาณ 5,250,000 บาท เพื่อให้ทางคณาจารย์มหาวิทยาลัยเทคโนโลยีราชมงคลร่วมกันสร้างต้นแบบเครื่องไฟฟ้า-แก๊สซิฟิเคชัน สำหรับเผาขยะพลาสติกและขยะอุตสาหกรรมที่ติดไฟได้ แทนการใช้ถ่านไม้ มีอัตราการป้อนขยะ 200 กิโลกรัม/ชั่วโมง ผลิตไฟฟ้าได้ 50 กิโลวัตต์ เป็นการนำร่องแก่ภาคเอกชน มีบริษัท พร้อมมาก จำกัด นำผลงานวิจัยดังกล่าวไปต่อยอดทำให้เกิดเป็นรูปธรรมและมีศักยภาพเบ่งชั้นทางพาณิชย์ โดยได้รับความช่วยเหลือจากกลุ่มกำจัดของสี สภาอุตสาหกรรมแห่งประเทศไทยในการจัดหารัฐดูดให้

วันที่ 20 มิถุนายน 2548 ที่ประชุมคณะกรรมการสิ่งแวดล้อมแห่งชาติ มีมติเห็นชอบในหลักการให้องค์การบริหารส่วนจังหวัดนนทบุรี ปรับเปลี่ยนเทคโนโลยีการจัดการขยะมูลฝอยจากกระบวนการที่เคยใช้อยู่เดิม เป็นระบบเตาเผาแบบไฟฟ้า-แก๊สซิฟิเคชัน เพื่อผลิตพลังงานไฟฟ้าจากขยะมูลฝอย ให้องค์การบริหารส่วนจังหวัดนนทบุรีร่วงรัดดำเนินการจัดทำรายละเอียดโครงการให้มีความชัดเจนครบถ้วนสมบูรณ์ และจัดทำรายงานการวิเคราะห์ผลกระทบสิ่งแวดล้อม (Environmental Impact Assessment: EIA) เนื่องจากเป็นโครงการผลิตกระแสไฟฟ้าที่มีกำลังการผลิตมากกว่า 10 เมกะวัตต์

ซึ่งเข้าข่ายต้องจัดทำรายงานการวิเคราะห์ผลผลกระทบสิ่งแวดล้อม ให้ดำเนินการรับฟังความคิดเห็นและทำความเข้าใจกับประชาชน องค์กรชุมชน องค์กรปกครองส่วนท้องถิ่น และองค์กรอื่นๆ ในพื้นที่ ตั้งแต่ขั้นตอนการจัดเตรียมโครงการจนถึงสุดโครงการ เพื่อเสนอต่อสำนักงานนโยบายและแผนทรัพยากรธรรมชาติและสิ่งแวดล้อม และคณะกรรมการสิ่งแวดล้อมแห่งชาติ พิจารณาให้ความเห็นชอบตามพระราชบัญญัติสิ่งแวดล้อมและรักษาคุณภาพสิ่งแวดล้อมแห่งชาติ พ.ศ. 2535 (ประเภทโครงการโรงไฟฟ้าพลังความร้อน) เพื่อใช้ประกอบการยื่นขออนุญาตจากหน่วยงานราชการที่เกี่ยวข้องก่อนดำเนินการพัฒนาโครงการ

ผู้วิจัยจึงมีความเห็นว่าจากจากเทคโนโลยีไฟฟ้าชีส-แก๊สซิฟิเคชัน จะสามารถนำไปใช้ในโรงงานอุตสาหกรรมแล้ว องค์การบริหารส่วนจังหวัดนonthบุรีก็น่าจะสามารถนำเทคโนโลยีไปประยุกต์ ใช้กับการเพาะขยายพืชที่เก็บจากบ้านเรือนและชุมชนต่างๆ ในจังหวัดนonthบุรีได้ ซึ่งจะทำให้ได้รับประโยชน์จากการเพาะปลูกพืชและสามารถรักษาสิ่งแวดล้อมได้แต่เนื่องจากขณะนี้โครงการยังต้องการข้อมูลอีกหลายอย่าง เช่น นูคลี่าปัจจุบันสุทธิ อัตราส่วนผลประโยชน์ต่อต้นทุน อัตราผลตอบแทนภายในของโครงการ มาสนับสนุนในการตัดสินใจนำเทคโนโลยีดังกล่าวมาประยุกต์ใช้กับการเพาะขยายชุมชน จึงสมควรที่จะทำการศึกษาวิจัยในเรื่องนี้

1. วัตถุประสงค์ของการวิจัย

เพื่อศึกษาความเป็นไปได้ทางด้านเทคนิค และด้านการเงินของการนำเทคโนโลยีไบโโร่ ไลซิส-แก๊ซซิฟิเคชันมาใช้ในการกำจัดบัณฑิตฟอยล์ในจังหวัดนนทบุรี

2. ประโยชน์ที่คาดว่าจะได้รับ

2.1 กองทรัพยากรธรรมชาติและสิ่งแวดล้อม องค์การบริหารส่วนจังหวัดนนทบุรีจะได้นำผลการศึกษาไปพิจารณา
วางแผนทางในการจัดการขยะมูลฝอยให้สอดคล้องกับปริมาณของที่เพิ่มมากขึ้น

2.2 เป็นข้อมูลประกอบการตัดสินใจของจังหวัด และชุมชนในการผลิตกระแสไฟฟ้าจากเชื้อเพลิงยั่งยืนเป็นข้อมูลในการเสนอแนะหน่วยงานที่เกี่ยวข้องในการลงทุน

23. เกิดการพัฒนาเทคโนโลยีการกำจัดเชื้อมลฝอยที่นิ่ง ระบบสิทธิภาพนากันน้ำ

2.4 ขยายมูลฝอยตอกถังน้ำอย่าง และยังสามารถนำพลังงานความร้อนที่ได้จากการเผาให้มีขยะไปใช้ให้เกิดประโยชน์น้ำกวนจน

2.5 เป็นข้อมูลเบื้องต้นในการกำหนดแนวทางวางแผนการใช้พลังงานทดแทนและการจัดการทรัพยากรอย่างมีประสิทธิภาพในอนาคต

3. ขอนเขตของการศึกษา

การศึกษาความเป็นไปได้ของการประยุกต์เทคโนโลยีไฟฟ์โรไลชิส-แก๊สซิฟิเคชัน มาใช้ในการกำจัดของเสียชุมชน เป็นการศึกษาความเป็นไปได้ทางด้านเทคนิค และด้านการเงิน โดยใช้วิธีวิเคราะห์ด้านทุน ผลตอบแทนจากการลงทุนของโครงการ ใช้ตัวชี้วัดความคุ้มค่าของโครงการ โดยพิจารณาจากการเปรียบเทียบกันระหว่างผลประโยชน์ (Benefit) หรือผลตอบแทน (Return) กับต้นทุน (Cost) ของโครงการด้วยมูลค่าปัจจุบันสุทธิ (Net Present Value: NPV) อัตราส่วน

ผลประโยชน์ต่อต้นทุน (Benefit Cost Ratio: BCR) อัตราผลตอบแทนภายในของโครงการ (Internal Rate of Return: IRR) วิเคราะห์และคาดการณ์ปริมาณขยะมูลฝอยที่ใช้เป็นเชื้อเพลิง และปริมาณกระแสไฟฟ้าที่ผลิตได้

4. คำนิยามศัพท์ที่ใช้ในการศึกษา

4.1 **ขยะมูลฝอย** หมายถึง สิ่งของที่ไม่ใช้แล้ว อาจอยู่ในรูปของแข็ง ของเหลว หรือกึ่งของแข็ง เช่น เศษกระดาษ เศษผ้า เศษสิ่งที่ถูกพลาสติก เศษของที่ไม่ใช้ต่างๆ หรือภาชนะบรรจุอาหาร

4.2 **ชีวมวล** หมายถึง สารทุกรูปแบบที่ได้จากสิ่งมีชีวิต (นอกจากได้กลายเป็นเชื้อเพลิงประเภทฟอสซิลไปแล้ว) ซึ่งรวมทั้งผลผลิตจากการเกษตรและป่าไม้ ของเสียจากสัตว์ และของเสียจากโรงงานแปรรูปทางการเกษตร บะหมี่ และน้ำเสียจากชุมชน

4.3 **โครงการ** หมายถึง โครงการผลิตกระแสไฟฟ้า โดยใช้ขยะมูลฝอยเป็นเชื้อเพลิง

4.4. **ไฟโรไรซิส (Pyrolysis)** หมายถึง กระบวนการเปลี่ยนแปลงทางความร้อนเคมีในการย่อยสลายชีวมวลในที่ไม่มีอากาศ จะได้แก๊ส น้ำมัน และถ่าน

4.5 **แก๊สซิฟิเคชัน (Gasification)** หมายถึง กระบวนการเผาไหม้อินทรีย์สารแบบจำกัดปริมาณออกซิเจน ซึ่งเป็นกระบวนการที่เกี่ยวข้องและต่อเนื่องจากไฟโรไรซิส ทำให้เกิดการเผาไหม้ที่ไม่สมบูรณ์ แก๊สที่เกิดขึ้นสามารถนำไปให้ความร้อนโดยตรง หรือนำไปเป็นเชื้อเพลิงสำหรับเครื่องยนต์สันดาปภายใน และผลิตกระแสไฟฟ้า

4.6 **กำลังไฟฟ้า หรือพลังไฟฟ้า (Power)** หมายถึง ความสามารถของไฟฟ้าที่จะทำงานได้ มีหน่วยเป็นวัตต์ (watt-w) โดย

1 กิโลวัตต์ (kilowatt-kW)	=	10^3 w
1 เมกะวัตต์ (megawatt-MW)	=	10^6 w
1 กิกะวัตต์ (gigawatt-GW)	=	10^9 w

4.7. **พลังงานไฟฟ้า (Energy หรือ Generation)** หมายถึง ผลของกำลังไฟฟ้าที่ทำงานไปเป็นระยะเวลาหนึ่ง มีหน่วยเป็นกิโลวัตต์-ชั่วโมง (kilowatt-hour: kWh) หรือเรียกันทั่วไปว่า หน่วย (Unit)

พลังงานไฟฟ้า = กำลังไฟฟ้า x จำนวนชั่วโมงที่อุปกรณ์ไฟฟ้าใช้งาน

ดังนั้นพลังงานไฟฟ้า 1 หน่วย (1 กิโลวัตต์-ชั่วโมง) หมายถึง พลังงานไฟฟ้าที่อุปกรณ์ไฟฟ้าใช้งานไปในการทำงานโดยสามารถทำงานได้ 1 กิโลวัตต์ เป็นเวลา 1 ชั่วโมง

5. วิธีดำเนินการวิจัย

การศึกษาความเป็นไปได้ของการประยุกต์เทคโนโลยีไฟฟ้าในโครงสร้างสูตรขั้นมาชุมชน จังหวัดนนทบุรี มีวิธีดำเนินการวิจัยดังนี้

5.1 เครื่องมือที่ใช้ในการวิจัย

เครื่องมือที่ใช้ในการวิจัยครั้งนี้ คือ โปรแกรมคอมพิวเตอร์ Microsoft Office Excel ที่ผู้วิจัยได้สร้างสูตรขึ้นมาคำนวณข้อมูลที่ได้จากการเก็บรวบรวมในพื้นที่ที่ทำการศึกษา และจากหน่วยงานทั้งภาครัฐและเอกชนที่เกี่ยวข้องทั้งหมด พร้อมทั้งตรวจสอบความถูกต้องของข้อมูลก่อนนำไปบันทึกเข้าโปรแกรม เพื่อนำไปใช้ในกระบวนการวิเคราะห์ความเป็นไปได้ทางด้านการเงิน โดยใช้ตัวชี้วัดดังนี้

- 1) มูลค่าปัจจุบันสุทธิ (Net Present Value: NPV)
- 2) อัตราส่วนผลประโยชน์ต่อต้นทุน (Benefit Cost Ratio: BCR)
- 3) อัตราผลตอบแทนภายในของโครงการ (Internal Rate of Return: IRR)

5.2 การเก็บรวบรวมข้อมูล

ข้อมูลที่ใช้ในการวิจัยได้มาจากการเก็บรวบรวมข้อมูลโดยการสอบถามผู้อำนวยการกอง

ทรัพยากรธรรมชาติและสิ่งแวดล้อม องค์กรบริหารส่วนจังหวัดนนทบุรี วิศวกรของโครงการไฟฟ้าฝ่ายผลิตแห่งประเทศไทย อาจารย์ภาควิชาวิศวกรรมเครื่องกล มหาวิทยาลัยราชมงคล วิทยาเขตชัยบุรี

2) ข้อมูลทุติยภูมิ (Secondary Data) เป็นข้อมูลที่ได้จากเอกสาร รายงาน และข้อมูลที่รวบรวมได้จากหน่วยงานราชการและเอกชน และข้อมูลจากการค้นคว้าทางอินเทอร์เน็ต เพื่อให้ได้ข้อมูลในแนวกว้างประกอบการศึกษาในครั้งนี้ ได้แก่

(1) ข้อมูลสถิติประชากรของจังหวัดนนทบุรี แหล่งข้อมูลจากกระทรวง มหาดไทย ตลอดจนการคาดการณ์อัตราการเพิ่มจำนวนประชากรในช่วงปี พ.ศ. 2551 ถึง พ.ศ. 2571

(2) ข้อมูลปริมาณขยะมูลฝอย โดยเก็บตัวเลขปริมาณขยะมูลฝอยจากกองทรัพยากรธรรมชาติและสิ่งแวดล้อม องค์กรบริหารส่วนจังหวัดนนทบุรี ตลอดจนการคาดการณ์อัตราการเพิ่มของขยะจากการประเมินอัตราการเจริญเติบโตของประชากรในช่วงปี พ.ศ. 2551 - พ.ศ. 2571

(3) ข้อมูลการผลิตกระแสไฟฟ้า โดยใช้ช่วงเวลาเป็นเชื้อเพลิงในการผลิตกระแสไฟฟ้าจากการเก็บรวบรวมข้อมูลของสำนักงานคณะกรรมการนโยบายพลังงานแห่งชาติ (สพช.)

(4) ข้อมูลเกี่ยวกับการรับซื้อกระแสไฟฟ้า จากกระบวนการรับซื้อกระแสไฟฟ้าจากผู้ผลิตรายเล็ก (SPP) ข้อมูลการใช้เชื้อเพลิงแต่ละชนิดและข้อมูลปริมาณการผลิตและซื้อพลังงานไฟฟ้าในประเทศไทย แยกตามชนิดเชื้อเพลิง จากการวางแผนการผลิตไฟฟ้า ของการไฟฟ้าฝ่ายผลิตแห่งประเทศไทย (กฟผ.)

(5) ข้อมูลเกี่ยวกับการรับซื้อกระแสไฟฟ้า จากขั้นตอนและระเบียบการรับซื้อไฟฟ้า พลังงานหมุนเวียนขนาดเล็กมาก (VSPP) ของการไฟฟ้านครหลวง (กฟน.) การไฟฟ้าส่วนภูมิภาค (กฟภ.)

(6) ข้อมูลการใช้เชื้อเพลิงแต่ละชนิดในการผลิตไฟฟ้าของการไฟฟ้าฝ่ายผลิตแห่งประเทศไทย (กฟผ.)

(7) ข้อมูลการศึกษาโรงไฟฟ้าชีวนวลดของภาคอุตสาหกรรมชั้นนำเดิม

(8) ข้อกำหนดของสำนักงานคณะกรรมการนโยบายพลังงานแห่งชาติ (สพช.)

(9) ข้อมูลการประเมินผลกระทบสิ่งแวดล้อม (EIA) ของบริษัท แมคโกร คอนซัลแทนท์ จำกัด อ้างถึงใน องค์การบริการส่วนจังหวัดนนทบุรี (2549)

5.3 ขั้นตอนในการดำเนินการเก็บรวบรวมข้อมูล

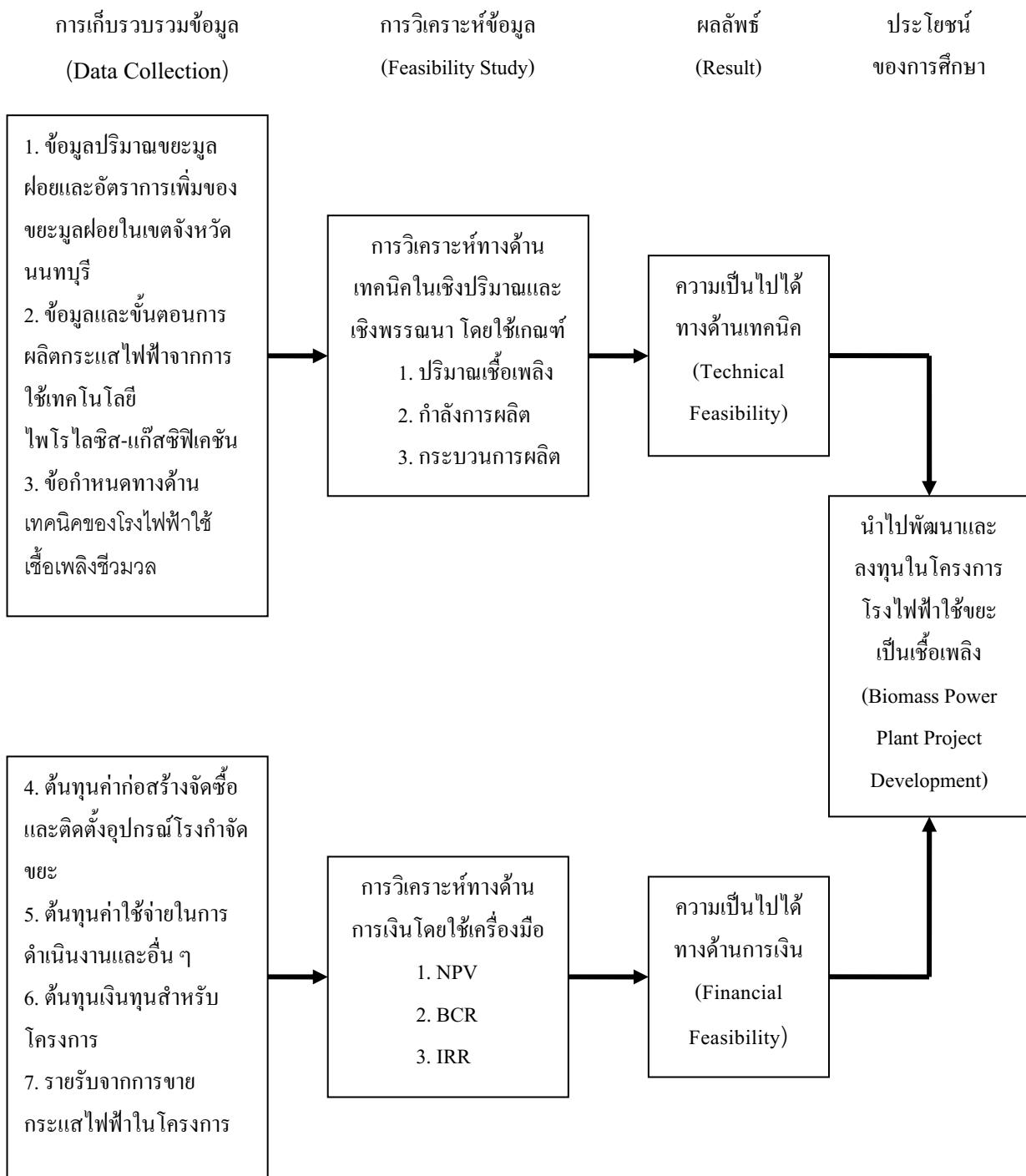
- 1) เก็บข้อมูลเกี่ยวกับสถานที่ตั้งโครงการ โดยการสัมภาษณ์ผู้บริหารและเจ้าหน้าที่กองทรัพยากรธรรมชาติและสิ่งแวดล้อม องค์การบริหารส่วนจังหวัดนนทบุรี
- 2) เก็บข้อมูลจำนวนประชากร และปริมาณขยะมูลฝอยในพื้นที่จังหวัดนนทบุรี โดยใช้ข้อมูลจากกระทรวงมหาดไทย กรมควบคุมมลพิษ องค์การบริหารส่วนจังหวัดนนทบุรี เพื่อคาดการณ์จำนวนประชากรและปริมาณขยะมูลฝอยในอนาคต
- 3) เก็บรวบรวมข้อมูลเพื่อการอ้างอิงในการจัดทำการวิเคราะห์ข้อมูล เช่น กระบวนการ การผลิต เครื่องจักร อุปกรณ์ และค่าใช้จ่ายอื่นๆ ที่เกี่ยวข้อง รวมถึงรายได้ที่โครงการจะได้รับ
- 4) ศึกษาวรรณกรรม แนวคิด ทฤษฎีที่เกี่ยวข้อง เพื่อค้นหาว่าในการศึกษารั้งนี้ต้องทราบข้อมูลอะไรบ้าง เพื่อประโยชน์ในการเตรียมการวิเคราะห์ข้อมูล

5.4 การวิเคราะห์ข้อมูล

การศึกษารั้งนี้ประกอบด้วยการวิเคราะห์ข้อมูลทั้งในเชิงพรรณนา และเชิงปริมาณสำหรับการศึกษาความเป็นไปได้ในการนำเทคโนโลยีไฟฟ้า โลชีส-แก๊สชีฟิเกชันมาใช้ในการกำจัดขยะมูลฝอย และผลิตกระแสไฟฟ้า เพื่อให้เป็นข้อมูลที่น่าเชื่อถือและสร้างความน่าสนใจแก่ผู้ที่สนใจจะลงทุนในโครงการประเภทนี้ จึงทำการศึกษาในหัวข้อดังนี้

- 1) **การวิเคราะห์เชิงพรรณนา (Descriptive Analysis)** เป็นการวิเคราะห์คาดการณ์ปริมาณขยะมูลฝอยสำหรับการผลิตไฟฟ้า ตลอดอายุของโครงการ 25 ปี รวมทั้งการวิเคราะห์ปริมาณกระแสไฟฟ้าที่ผลิตได้จากการใช้ขยะมูลฝอยเป็นเชื้อเพลิง ความเหมาะสมของสถานที่ตั้งโครงการ กระบวนการผลิตกระแสไฟฟ้า ข้อกำหนดทางด้านเทคนิค (Technical Specification) จากโรงไฟฟ้าประเภทที่ใช้ชีวนวลดเป็นเชื้อเพลิง หรือใช้เชื้อเพลิงประเภทอื่น ๆ ซึ่งใกล้เคียงกับโรงไฟฟ้าที่ทำการศึกษาในครั้งนี้

2) การวิเคราะห์เชิงปริมาณ (Quantitative Analysis) มีดังนี้


- (1) **การคาดการณ์ปริมาณขยะมูลฝอยที่จะนำมาใช้เป็นเชื้อเพลิง** การคาดการณ์ปริมาณขยะมูลฝอย ใช้ตัวเลขการคาดการณ์ประชากรในแต่ละปี คุณกับตัวเลขการคาดการณ์อัตราการผลิตขยะมูลฝอยของประชากรในแต่ละปี ซึ่งอัตราการผลิตขยะมูลฝอยของประชากรจะสัมพันธ์กับอัตราการขยายตัวของผลิตภัณฑ์มวลรวมประชาชาติ

(2) การวิเคราะห์ความเหมาะสมของโครงการ โดยใช้หลักการวิเคราะห์ต้นทุน-ผลตอบแทน (Cost-Benefit Analysis) ซึ่งใช้เกณฑ์การตัดสินใจแบบปรับค่าเวลา โดยระบุรายการต้นทุนและผลตอบแทนที่เกิดจากโครงการ จากนั้นหาค่าต้นทุนทางเศรษฐศาสตร์ ได้แก่ ต้นทุนคงที่ ต้นทุนผันแปร และผลตอบแทนทั้งทางตรงและทางอ้อม เพื่อทราบมูลค่าทรัพยากรที่ใช้ในโครงการทั้งหมด รวมถึงมูลค่าสินค้าและบริการที่โครงการผลิตในแต่ละปี

(3) ประเมินความคุ้มค่าของโครงการ โดยการวิเคราะห์ทางการเงิน (Financial Feasibility Study) ช่วยให้ทราบถึงความเป็นไปได้ของการลงทุนในโครงการ โดยดูจากผลตอบแทนของการลงทุน เครื่องมือที่ใช้ วิเคราะห์และตัดสินใจทางการเงินประกอบด้วย

- มูลค่าปัจจุบันสุทธิ (Net Present Value: NPV)
- อัตราส่วนผลประโยชน์ต่อต้นทุน (Benefit Cost Ratio: BCR)
- อัตราผลตอบแทนภายในของโครงการ (Internal Rate of Return: IRR)

ภาพที่ 1 ขั้นตอนการวิเคราะห์ข้อมูลเกี่ยวกับความเป็นไปได้ของการนำเทคโนโลยีไบโอลอจิส-แก๊สซิฟิเคชันมาใช้ในการกำจัดขยะมูลฝอยของชุมชน

6. สรุปผลการวิจัย

ผลการวิจัยสรุปได้เป็น 2 ส่วน ดังนี้

ส่วนที่ 1 ผลการศึกษาความเป็นไปได้ทางด้านเทคนิค

จากการศึกษาความเป็นไปได้ทางด้านเทคนิคของการประยุกต์เทคโนโลยีไฟฟ้า ไลซิส-เก็ต ชิพิคชันมาใช้ในการกำจัดขยะมูลฝอยของชุมชน พบว่ามีความเป็นไปได้ทางด้านเทคนิค โดยมีผลบวกครอบคลุมรายการต่างๆ ได้แก่ สถานที่ตั้งของโครงการ เครื่องจักรและกระบวนการผลิตกระแสไฟฟ้า การวิเคราะห์และคาดการณ์ปริมาณขยะมูลฝอยสำหรับการผลิตกระแสไฟฟ้า และปริมาณกระแสไฟฟ้าที่ผลิตได้จากการใช้ขยะมูลฝอยดังนี้

1. สถานที่ตั้งโครงการ

ทำเลที่ตั้งของโครงการมีความเหมาะสม เนื่องจากพื้นที่ก่อสร้างโครงการอยู่ใกล้กับสถานที่กำจัดขยะมูลฝอยเดิม จึงช่วยลดต้นทุนการขนส่งขยะมูลฝอยไปยังโรงกำจัด การคมนาคมสะดวก เนื่องจากมีถนนตัดผ่าน ไม่ห่างไกลจากบริเวณแหล่งน้ำ และมีสาธารณูปโภคพร้อม สภาพภัยภาพของดินบริเวณที่ตั้งโครงการมีความเหมาะสมที่จะพัฒนาเป็นพื้นที่ดำเนินโครงการกำจัดขยะมูลฝอยได้

2. เครื่องจักรและกระบวนการผลิตกระแสไฟฟ้า

ระบบกำจัดขยะมูลฝอยด้วยเทคโนโลยีไฟฟ้า ไลซิส-เก็ตชิพิคชัน เป็นการเผาที่ใช้ความร้อนสูง จึงมีประสิทธิภาพในการกำจัดขยะให้ลดลงได้มากถึงร้อยละ 90 และยังสามารถใช้ความร้อนจากการเผาไว้ก้าชอ่ำงสมบูรณ์มาใช้ประโยชน์ในการผลิตไอน้ำและผลิตไฟฟ้าจากเครื่องกังหันไอน้ำ (Steam Turbine)

3. การวิเคราะห์และคาดการณ์ปริมาณขยะมูลฝอยสำหรับการผลิตกระแสไฟฟ้า

อัตราการทิ้งขยะมูลฝอยเฉลี่ยของประชาชนในจังหวัดนนทบุรีทั้งจังหวัดมีค่าเท่ากับ 0.37 กิโลกรัม/คน/วัน ในปี พ.ศ.2555 มีปริมาณขยะมูลฝอย 430 ตัน/วัน ปี พ.ศ. 2565 มีปริมาณขยะมูลฝอย 553 ตัน/วัน ปี พ.ศ. 2575 มีปริมาณขยะมูลฝอย 710 ตัน/ปี ปริมาณขยะมูลฝอยจะเพิ่มขึ้นตามปี

4. ปริมาณกระแสไฟฟ้าที่ผลิตได้จากการใช้ขยะมูลฝอย

ปริมาณขยะมูลฝอยของนนทบุรีในระยะเวลาของโครงการ 25 ปี (พ.ศ. 2553 - พ.ศ. 2578) สามารถผลิตกระแสไฟฟ้าที่มีกำลังขนาด 3 - 5 เมกะวัตต์

ส่วนที่ 2 ผลการศึกษาความเป็นไปได้ทางด้านการเงิน

ในการวิเคราะห์ความเป็นไปได้ทางด้านการเงิน (คิดขนาดกำลังการผลิตไฟฟ้า 20 เมกะวัตต์ ตามกำหนดโครงการในเบื้องต้นของจังหวัดนนทบุรี) มีความสัมพันธ์กับปัจจัยต่างๆ สรุปได้ดังนี้

- การลงทุนและดำเนินการ โครงการ เริ่มต้นปี พ.ศ. 2553 จะมีการใช้เงินลงทุนประมาณ 3,921,398,223 บาท โดยสัดส่วนของการลงทุนแบ่งเป็น 2 ส่วน คือ ส่วนของเจ้าของ และสถาบันการเงิน
- มีรายได้ในปีแรก 839,346,739 บาท
- สามารถสร้างกำไรได้ตั้งแต่สิ้นปีที่ 1 ของการเริ่มดำเนินงาน
- สามารถคืนทุนได้ภายในระยะเวลา 8 ปี

5. มีมูลค่าปัจจุบันสุทธิ (Net Present Value: NPV) เท่ากับ 5,413,998,149.80 มีค่ามากกว่า 0 หมายความว่า คุ้มค่าแก่การลงทุน

6. อัตราส่วนผลตอบแทนต่อต้นทุน (Benefit Cost Ratio: BCR) เท่ากับ 3.40 อยู่ในเกณฑ์ที่ยอมรับได้ เนื่องจากมีค่ามากกว่า 1

7. อัตราผลตอบแทนภายในของโครงการ (Internal Rate of Return: ERR) เท่ากับร้อยละ 13.4 ซึ่งมีมากกว่าอัตราผลตอบแทนภายนอก (External Rate of Return: ERR) หรือค่าใช้โอกาสของทุน (Opportunity Cost of Capital) ทำให้โครงการมีความคุ้มค่าแก่การลงทุนและมีความเป็นไปได้ทางด้านการเงิน

จากการศึกษานี้พบว่า โครงการมีความเป็นไปได้ทางด้านการเงินหรือการลงทุน โดยมีเหตุผลสนับสนุนดังนี้

1. นอกจากโครงการจะมีรายได้จากการขายไฟฟ้าและปั้นก๊าซแล้ว กิจการยังมีรายได้จากการขายขยะ และเงินอุดหนุนค่าไฟฟ้าจากกองทุนเพื่อส่งเสริมการอนุรักษ์พลังงาน

2. Peak off และ Normal day ไม่มีผลกระทบต่อการเพิ่มขึ้นหรือลดลงของรายได้มากนัก เนื่องจากวันหยุดเสาร์-อาทิตย์ และวันหยุดนักขัตฤกษ์จะใกล้เคียงกันทุกปี

3. ต้นทุนราคาของเครื่องจักรมีราคาสูงมากทำให้ผลตอบแทนที่จะได้กลับมาช้า หากผู้ลงทุนที่สนใจจะลงทุนในโครงการนี้ สามารถหาเครื่องจักรที่มีราคาถูกกว่า ก็จะทำให้กิจการคืนต้นทุนได้เร็วขึ้น และทำให้กำไรต่อปีสูงขึ้นด้วย เนื่องจากราคาทุนของเครื่องจักรจะถูกตัดไปเป็นค่าใช้จ่ายในรูปของค่าเสื่อมราคา

4. สามารถที่คำนวณรายได้เท่ากันทุกปี เนื่องจากกำลังการผลิตของเครื่องจักรที่คาดหมายว่าจะนำมาใช้มีกำลังการผลิตเต็มที่ 20 เมกะวัตต์ รายได้ที่คำนวณได้จากการวิจัยนี้จึงเท่ากันทุกปี และจะเพิ่มขึ้นในอนาคต โดยมีแนวโน้มเพิ่มขึ้นจากการปรับราคาการรับซื้อไฟฟ้าที่สูงขึ้น

7. อภิปรายผลการวิจัย

7.1 ด้านเครื่องจักรและกระบวนการผลิตนั้น ปัจจุบันเครื่องจักรยังต้องนำเข้าจากต่างประเทศ ซึ่งมีเทคโนโลยีที่ทันสมัย เพื่อประสิทธิภาพในการผลิต จึงทำให้เครื่องจักรมีราคาสูงมาก เมื่อคำนวณแล้วจำเป็นต้องมีค่าบำรุงรักษา พoS กว่า ทำให้ต้นทุนของโครงการในส่วนนี้สูงขึ้น ส่วนกระบวนการผลิตไม่ยุ่งยากซับซ้อนมากนัก แต่มีความจำเป็นต้องบำรุงรักษาเครื่องจักรอย่างต่อเนื่อง ทำให้อาจมีค่าบำรุงรักษาเพิ่มขึ้น หากผู้ลงทุนสามารถหาเครื่องจักรที่มีราคาถูกลงได้ก็จะทำให้ต้นทุนในการผลิตถูกลง และสามารถคืนทุนได้เร็วขึ้น

7.2 การคาดการณ์ปริมาณของมูลฝอยที่จะเกิดขึ้นในอนาคตของจังหวัดนนทบุรีปี พ.ศ. 2553 - พ.ศ. 2578 พบว่า ในปีแรกของการดำเนินการผลิตกระแสไฟฟ้า (พ.ศ. 2554) จะมีปริมาณของมูลฝอยทั้งสิ้น 336 ตัน/วัน หรือ 122,480 ตัน/ปี แต่เมื่อคัดแยกขยะบางส่วนออกไปแล้ว จะเหลือขยะที่เหมาะสมจะนำมาป้อนเข้าสู่ระบบเพียง 108 ตัน/วัน สามารถผลิตไฟฟ้าได้ 3 เมกะวัตต์ ในปีสิ้นสุดโครงการ (พ.ศ. 2578) จะมีของมูลฝอยเพิ่มขึ้นเป็น 613 ตัน/วัน หรือ 223,618 ตัน/ปี เมื่อคัดแยกขยะบางส่วนออกไปจะเหลือขยะที่เหมาะสมจะนำมาป้อนเข้าสู่ระบบประมาณ 197 ตัน/วัน สามารถผลิตไฟฟ้าได้ 5 เมกะวัตต์ ยกเว้นว่าในอนาคตเครื่องจักรจะมีเทคโนโลยีที่สูงขึ้นก็อาจผลิตไฟฟ้าได้เพิ่มขึ้น

7.3 จากการศึกษาความเป็นไปได้ทางด้านการเงิน โดยคิดขนาดของโครงการที่มีกำลังการผลิตไฟฟ้า 20 เมกะวัตต์ นั้น สามารถทำได้ แต่จะต้องหาบประมาณแหล่งเงินทุนให้ได้ 2,250 - 2,450 ตัน/วัน ซึ่งจะทำให้มีค่าใช้จ่ายเกี่ยวกับวัตถุดิบ

เพิ่มขึ้น รวมไปถึงค่าใช้จ่ายบางอย่างก็เพิ่มขึ้นด้วย เช่น ค่าขนส่ง ค่าแรงงาน เป็นต้น ถ้าเลือกลงทุนเครื่องจักรที่มีกำลังการผลิต 20 เมกะวัตต์ แต่ตัดสินใจในจังหวัดนนทบุรีมีเพียง 336 - 613 ตัน/วัน (สามารถผลิตไฟฟ้าได้ 3 - 5 เมกะวัตต์) ก็จะทำให้เกิดการสูญเสียพลังงานไปโดยเปล่าประโยชน์ และมีผลกระทบทำให้ต้นทุนของโครงการเพิ่มขึ้น ในทางกลับกันถ้าเลือกกำลังการผลิตไฟฟ้าที่ 3 - 5 เมกะวัตต์ ก็จะมีผลกระทบในเรื่องของรายได้ที่ลดลงทุกอย่าง เช่น รายได้จากการขายไฟฟ้า การขายปั๊ก ค่าขนส่ง และเงินสนับสนุนจากกองทุนเพื่อส่งเสริมอนุรักษ์พลังงาน นอกจากนี้ยังทำให้มีระยะเวลาในการคืนทุนเพิ่มขึ้นด้วย

7.4 หากไม่คำนึงถึงเรื่องราคาของเครื่องจักรมากนัก จะเห็นว่าเทคโนโลยีไฟฟ้าโซลาร์เซลล์ เป็นเทคโนโลยีที่สามารถนำมาแก้ไขปัญหาการกำจัดขยะมูลฝอยและปัญหาด้านสิ่งแวดล้อม ได้อย่างเป็นระบบและยั่งยืน รวมทั้งสอดคล้องกับนโยบายของรัฐบาลในการส่งเสริมการผลิตไฟฟ้าจากพลังงานหมุนเวียนที่มีอยู่ในประเทศไทย เป็นเชื้อเพลิงให้มากขึ้น อีกทั้งยังเป็นการช่วยรักษาค่าใช้จ่ายในการนำเข้าพลังงาน และลดผลกระทบต่อสิ่งแวดล้อมที่เกิดจากการใช้พลังงานฟอสซิล ระบบการกำจัดขยะ มูลฝอยด้วยเทคโนโลยีไฟฟ้าโซลาร์เซลล์-แก๊สโซเชียลเซลล์ให้ประโยชน์ต่อจังหวัดนนทบุรีหลายประการเนื่องจาก

1) สามารถกำจัดขยะมูลฝอย ได้อย่างรวดเร็ว จึงช่วยลดปริมาณขยะมูลฝอยในพื้นที่จังหวัดนนทบุรี และทำให้ปัญหาสิ่งแวดล้อมในพื้นที่ลดลงได้ เช่น ลดปัญหาความรำคาญจากกลิ่นเหม็น แมลง สัตว์พ่าหะนำโรค ความเสี่ยงของความเป็นพิษและสารก่อมะเร็ง การระเบิดและการลุก ไฟไหม้จากกองขยะ

2) สามารถลดปัญหาของจังหวัดนนทบุรีในการจัดหาพื้นที่เพื่อขยายบ่อฝังกลบขยะตามปริมาณขยะที่เพิ่มขึ้นทุกๆ ปี อีกทั้งยังช่วยสร้างภาพลักษณ์ให้กับจังหวัดนนทบุรีในด้านการสร้างสรรค์สังคม พัฒนาคุณภาพชีวิตของประชาชน

3) ช่วยลดการระบายน้ำซึ่การรับน้ำได้อย่างมีประสิทธิภาพ ลดการซึมซับของน้ำที่ก่อให้เกิดปัญหาน้ำท่วม ให้กับชุมชนที่อยู่ติดกับแม่น้ำเจ้าพระยา

4) สามารถนำปั๊กที่เหลือจากการเผาไหม้ไปใช้ประโยชน์ เช่น นำไปฝังกลบเพื่อปรับปรุงเป็นสถานที่พักผ่อนหย่อนใจ สวนสุขภาพ ใช้พัฒนาชุมชนต่อไป หรือใช้สนับสนุนทดสอบดินลูกรัง เป็นการเพิ่มน้ำค่าเช่าที่ดิน ให้กับผู้เช่าที่ดิน

5) ช่วยลดผลกระทบทางด้านสุขภาพอนามัยของประชาชนที่อาศัยอยู่รอบบริเวณพื้นที่โครงการฯ เนื่องจากบริเวณที่ทึ่งขยะมูลฝอยจะเป็นแหล่งกำเนิดของเชื้อโรคชนิดต่างๆ มากน้อย รวมทั้งน้ำเสียที่อาจปนเปื้อนลงสู่แหล่งน้ำ หากประชาชนเกิดการเจ็บป่วยขึ้นจะต้องเสียค่าใช้จ่ายในการรักษาพยาบาลและมีค่าเสียโอกาสจากการได้รับเงินที่ต้องหด涓งาน

8. ข้อเสนอแนะ

8.1 ข้อเสนอแนะในการนำผลการวิจัยไปใช้

- 1) แม้ว่าการใช้เชือเพลิงชีวนวลด จะก่อให้เกิดผลเสียต่อสิ่งแวดล้อมน้อยกว่าการใช้เชือเพลิงฟอสซิล แต่ก็ควรคำนึงถึงผลกระทบภายนอกที่จะเกิดขึ้นด้วย เช่น ด้านเศรษฐกิจและสังคม
- 2) การตัดสินใจลงทุน ควรให้ความสำคัญกับการเลือกสรรเครื่องจักร เพื่อที่จะได้เครื่องจักรที่มีประสิทธิภาพ และคุ้มค่ากับเงินที่จ่ายไป
- 3) เพื่อความคุ้มค่าในการลงทุน ควรมีการตรวจสอบราคาเครื่องจักร ณ ราคปัจจุบัน เนื่องจากในอนาคต อัตราเงินเฟ้อของประเทศไทยมีการเปลี่ยนแปลงเพิ่มขึ้นหรือลดลง ควรมีการวิเคราะห์ความเป็นไปได้ของโครงการ เพื่อให้ความคุ้มค่าของโครงการสอดคล้องกับความเป็นจริงมากขึ้น
- 4) เพื่อความคุ้มค่าในการลงทุน ควรคำนึงถึงข้อมูลตัวเลขและปีที่ทำการศึกษา เนื่องจาก ผลการวิจัยเป็นการรวบรวมข้อมูลจากแหล่งข้อมูลต่างๆ และจากการคาดการณ์ข้อมูลในอนาคต เมื่อเวลาผ่านไปข้อมูลอาจ ล้าสมัย ดังนั้นข้อมูลที่จะนำมาประกอบการตัดสินใจควรเป็นข้อมูลที่อัพเดท (Update)
- 5) เมื่อดำเนินโครงการสำเร็จจะมีความชื้นตัวก้อนนำเข้าเตาเผา หรือการคัดแยกขยะก้อนนำเข้าเตาเผา
- 6) การศึกษาในครั้งนี้ส่วนใหญ่จะคำนึงถึงเฉพาะผลประโยชน์ที่ได้รับจากการขายไฟฟ้า การเก็บขยะ การขายขี้เถาที่ได้จากการเผา และผลประโยชน์ทางอ้อม เช่น การจ้างงาน ส่วนผลประโยชน์ที่ไม่สามารถตีค่าเป็นตัวเงินได้ เช่น การที่ประชาชนมีความเป็นอยู่ที่ดีขึ้นภายนอก การก่อสร้างโครงการนี้ไม่ได้นำมาคิด อะนั้นในการศึกษาหากคำนึงถึง ประโยชน์เหล่านี้ด้วย อาจทำให้โครงการมีความคุ้มค่าก่อลงทุนยิ่งขึ้น

8.2 ข้อเสนอแนะเกี่ยวกับการทำวิจัยครั้งต่อไป

- 1) ควรศึกษาเพิ่มเติมในส่วนของขยะมูลฝอยที่นำมารีไซค์ ซึ่งบางส่วนสามารถนำกลับมาใช้ใหม่ (Reused) หรือนำไปแปลงสภาพกลับมาใช้ใหม่ (Recycle) ได้
- 2) ควรศึกษาเพิ่มเติมกระบวนการด้านเทคนิค เกี่ยวกับการนำความร้อนจากแสงอาทิตย์มาใช้ประโยชน์ ในการทำให้ขยะมูลฝอยแห้งก้อนนำเข้าเตาเผา เพื่อเพิ่มประสิทธิภาพการเผาขยะมูลฝอยของเตาเผามากขึ้น
- 3) ใน การผลิตไฟฟ้ายังมีช่วงเวลาประเทืองอื่นๆ ที่สามารถนำมาใช้เป็นเชือเพลิงในการผลิตได้อีก ดังนั้น การศึกษาครั้งต่อไป จึงควรมีการศึกษาระบบที่จะใช้เชือเพลิงชีวนวลดอื่นกับโรงไฟฟ้าที่ใช้เชือเพลิงว่าจะให้ประโยชน์ต่อผู้ลงทุนที่แตกต่างกันอย่างไร
- 4) ควรทำการวิจัยต่ออยอดในประเด็นของการลงทุนซื้อขยะมูลฝอยจากจังหวัดใกล้เคียงมาใช้ ว่าจะมี ความคุ้มค่ากับการลงทุนหรือไม่

บรรณานุกรม

กมลพิพิธ ยืนยง (2547) การศึกษาความเป็นไปได้ในการผลิตพลังงานทดแทนจากของเสียในฟาร์มสุกร

โดยระบบก๊าซชีวภาพ กรณีศึกษาอ่ำเภอโพธาราม จังหวัดราชบุรี กรุงเทพมหานคร: วิทยานิพนธ์
เศรษฐศาสตร์มหาบัณฑิต มหาวิทยาลัยสุโขทัยธรรมราช

กรรมควบคุมมูลพิย (2547) รายงานฉบับสมบูรณ์ โครงการสำรวจวิเคราะห์องค์ประกอบของมูลฝอย
ชุมชนของเทศบาลทั่วประเทศ. กรุงเทพมหานคร: กรรมควบคุมมูลพิย

จิรายุ ศรีประเสริฐ (2544) การศึกษาความเป็นไปได้ของโครงการกำลังด้วยมูลฝอยของภาคเอกชนใน
จังหวัดนนทบุรี กรุงเทพมหานคร: วิทยานิพนธ์เศรษฐศาสตร์มหาบัณฑิต มหาวิทยาลัยเกษตรศาสตร์
ชัชพล ทรงสุนทรวงศ์ สมศรี ทองหัน และครั้นญา กังพันนิชกุล (2552) รายงานวิจัยฉบับสมบูรณ์โครงการ
การศึกษาความเป็นไปได้ของการประยุกต์เทคโนโลยีไฟฟ้ากระแสสลับ-แก๊สซิฟิเคชันมาใช้ในการกำจัด
มูลฝอยของชุมชน: กรณีศึกษา อ่ำเภอไทรน้อย จังหวัดนนทบุรี นนทบุรี: เครือข่ายวิจัย
เครือข่ายอุดมศึกษาภาคกลางตอนบน สำนักงานคณะกรรมการการอุดมศึกษา (สกอ.)

ธัญญา เพ็ญไชยา (2549) การศึกษาความเป็นไปได้ของโครงการผลิตกระแสไฟฟ้าที่ใช้เชื้อเพลิงจากยะ
ธรรมชาติ จังหวัดนนทบุรี กรุงเทพมหานคร: วิทยานิพนธ์เศรษฐศาสตร์มหาบัณฑิต มหาวิทยาลัยสุโขทัย
ธรรมราช

ศุนย์ปฏิบัติการวิศวกรรมพลังงานสิ่งแวดล้อม (2545) การคาดการณ์ปริมาณมูลฝอยในอนาคตของ
หน่วยงานต่าง ๆ ในจังหวัดนนทบุรี กรุงเทพมหานคร: คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์
ฤทธิ์ ละกำปัน (2545) การศึกษาความเป็นไปได้ของโครงการโรงไฟฟ้าใช้มูลฝอยและแกงเป็น
เชื้อเพลิงพื้นที่จังหวัดนนทบุรี กรุงเทพมหานคร: วิทยานิพนธ์ปริญญาบริหารธุรกิจบัณฑิต
มหาวิทยาลัยเกษตรศาสตร์

สนิทพงษ์ ไชยขันแก้ว (2546) การศึกษาความเป็นไปได้ในการผลิตน้ำสะอาดเพื่อการบริโภค : กรณีศึกษา
ภายในหน่วยทหาร จังหวัดราชบุรี กรุงเทพมหานคร: การศึกษาค้นคว้าอิสระเศรษฐศาสตร์มหาบัณฑิต
มหาวิทยาลัยสุโขทัยธรรมราช

หนังสือพิมพ์คณชัคลี วิจัยเพาบะพลารสติกเป็นไฟฟ้าทดแทนน้ำมัน วันที่ 2 สิงหาคม 2549

หนังสือพิมพ์ผู้จัดการ “ไฟฟ้า “พลังงานไม้” ทางเลือกในยุคหน้ามันแพร่ วันที่ 13 มิถุนายน 2550

องค์การบริหารส่วนจังหวัดนนทบุรี และการไฟฟ้าฝ่ายผลิตแห่งประเทศไทย (2549) รายงานศึกษาความ
เหมาะสมโครงการระบบจัดการขยะมูลฝอยองค์การบริหารส่วนจังหวัดนนทบุรี นนทบุรี:
องค์การบริหารส่วนจังหวัดนนทบุรี