Data Science for Driving Public Policy

Authors

  • Nunta Bootnoi Faculty of Management Sciences Lampang Rajaphat University, Thailand
  • Suthira Suthira Thipwiwatpotjana Faculty of Management Sciences Lampang Rajaphat University, Thailand
  • Chamaiporn Kanjanapan Faculty of Management Sciences Lampang Rajaphat University, Thailand
  • Pitoon Kanjanapan Faculty of Management Sciences Lampang Rajaphat University, Thailand

Keywords:

Data Science, Public Policy, Driving Public Policy

Abstract

This article presents a study of the application of data science for driving public policy under the enormous and highly complex 21st-century data landscape known as “Big Data.” Data science is an interdisciplinary field that combines advanced mathematics and statistics, computer science, and specialized knowledge expertise to process and analyze data for using data benefit on a broader scope. Implementing data science for driving public policy processes aims to create quality and timely information for public administration and services, such as health care, education, transportation, utilities, and safety, as well as succor to disadvantaged social groups in order to treat all citizens equally. Data science allows increasing the government’s ability to adequately and precisely access information for more efficient and effective policy formulation. It also responds to the increasing needs of people in government for information utilization and disclosure and for government transparency, which is a crucial element in successful public policy

References

ภาษาไทย

กรมพินิจและคุ้มครองเด็กและเยาวชน กระทรวงยุติธรรม. (2561). แผนปฏิบัติการดิจิทัล กรมพินิจและ

คุ้มครองเด็กและเยาวชน กระทรวงยุติธรรม พ.ศ. 2561-2563. Retrieved from

http://www.djop.go.th/Djop/index.php

กรมสรรพากร. (2559). การปรับตัวของกรมสรรพากรในยุคเศรษฐกิจและสังคมดิจิทัล. Retrieved from

https://www.dga.or.th/upload/download/file_48416e2e4dda0dff76502330

c49f3672.pdf

กระทรวงดิจิทัลเพื่อเศรษฐกิจและสังคม. (2562). (ร่าง) กรอบการวิเคราะหขอมูลขนาดใหญ่ภาครัฐ.

Retrieved from http://www.dld.go.th/th/images/stories/downlaod/bigdata/

de/framework/25620405/BigdataframeworkV1.pdf

การท่องเที่ยวแห่งประเทศไทย. (2562). Tourism smart data : Big data กับการท่องเที่ยว.

TAT Review. Retrieved from https://www.tatreviewmagazine.com/article/tourism-

smart-data-big-data/

คลังข้อมูลสุขภาพ กระทรวงสาธารณสุข. (2562). HDC สุขภาพแม่และเด็ก (MCH). Retrieved from

https://kkhdc.moph.go.th/download/uploads/1560961380_91030.pdf

ทิพย์ศริน ภัคธนกุล และทศพล เชี่ยวชาญประพันธ์. (2559). การเปิดเผยข้อมูลภาครัฐสู่การเป็น

รัฐบาลแบบเปิด: นวัตกรรมการบริหารราชการแผ่นดินยุคดิจิทัลของประเทศไทย.

การประชุมวิชาการสถาบันพระปกเกล้า ครั้งที่ 18 ประจำปี 2559 หัวข้อเติมชีวิต คืนชีวา

ประชาธิปไตย, สถาบันพระปกเกล้า, 99-123.

ประภาพร กุลลิ้มรัตน์ชัย. (2061). การเข้าสู่ยุคของวิทยาศาสตร์ข้อมูล. วารสารวิชาการมหาวิทยาลัย

อีสเทิร์นเอเชีย ฉบับวิทยาศาสตร์และเทคโนโลยี, 12(2), 120-129.

เศรษฐพงค์ มะลิสุวรรณ. (2560). Data Strategy. Retrieved from https://www.nbtc.go.th/

getattachment/News/Information/เอกสารแนบ.pdf.aspx

สำนักงานเลขาธิการสภาผู้แทนราษฎร. (2016). Big Data ในภาครัฐ. Retrieved from

https://library2.parliament.go.th/ejournal/content_af/2559/dec2559-4.pdf

สำนักงานการบินพลเรือนแห่งประเทศไทย. (2561). ยุทธศาสตร์สำนักงานการบินพลเรือนแห่งประเทศไทย

ปี พ.ศ. 2562-2565. Retrieved from https://www.caat.or.th/wp-content/uploads/

/10/แผนยุทธศาสตร์-กพท.-ประจำปี-พ.ศ.-2562-2565.pdf

สำนักงานพัฒนารัฐบาลดิจิทัล (องค์การมหาชน). (2560). Digital Government towards Thailand.

0 Retrieved from https://www.dga.or.th/en/content/2031/11769/

สำนักงานพัฒนารัฐบาลดิจิทัล (องค์การมหาชน). (2562). MDE จับมือ 20 หน่วยงานภาครัฐและ

สถาบันการศึกษา ลงนามพัฒนากำลังคนด้าน Data Science หนุนแพลตฟอร์มวิเคราะห์ข้อมูล

ขนาดใหญ่ของประเทศ. Retrieved from https://www.dga.or.th/th/content/913/13452/

สำนักงานหลักประกันสุขภาพแห่งชาติ. (2561). แผนพัฒนาดิจิทัลเพื่อระบบหลักประกันสุขภาพแห่งชาติ

ของสำนักงานหลักประกันสุขภาพแห่งชาติ (สปสช.) ฉบับที่ 1 (ปี 2561–2564). Retrieved

from https://www.nhso.go.th/frontend/page-contentdetail.aspx?CatID=MTI4Mg==

ภาษาอังกฤษ

Bosco, E. (2016). Data Science for Social Good is Making a Mark, Starting a Movement.

Retrieved from https://datasmart.ash.harvard.edu/news/article/data-science-for-

social-good-is-making-a-mark-starting-a-movement-905

Bright, J., Ganesh, B., Seidelin, C., & Vogl, T. (2019). Data Science for Local Government.

Oxford Internet Institute University of Oxford. Retrieved from

https://smartcities.oii.ox.ac.uk/wp-content/uploads/sites/64/2019/04/Data-Science-

for-Local-Government.pdf

Chatterjee, M. (2020). Difference Between Data Science vs Machine Learning and Artificial

Intelligence. Retrieved from https://www.mygreatlearning.com/blog/difference-

data-science-machine-learning-ai/

Civil Aviation Authority of Thailand. (2018). Strategy of the Civil Aviation Authority of

Thailand, 2019-2022. Retrieved from https://www.caat.or.th/wp-content/uploads/

/10/แผนยุทธศาสตร์-กพท.-ประจำปี-พ.ศ.-2562-2565.pdf

Davenport T. H., & Patil D.J. (2012). Data Scientist: The Sexiest Job of the 21st Century.

Harvard Business Review, October 2012. Retrieved from https://hbr.org/2012/10/

data-scientist-the-sexiest-job-of-the-21st-century

Department of Juvenile Observation and Protection, Ministry of Justice. (2018). Digital

action plan of Department of Juvenile Observation and Protection, Ministry of

Justice 2018-2020. Retrieved from http://www.djop.go.th/Djop/index.php

Diermeier, D. (2015). Data science meets public policy. The University of Chicago Magazine.

Retrieved from https://mag.uchicago.edu/university-news/data-science-meets-

public-policy

Digital Government Development Agency (Public Organization). (2017). Digital

Government towards Thailand. 4.0 Retrieved from https://www.dga.or.th/en/

content/2031/11769/

Digital Government Development Agency (Public Organization). (2019). MDE partners

with 20 government agencies and educational institutions to sign up to

develop Data Science workforce to support data analysis platform.

Retrieved from https://www.dga.or.th/th/content/913/13452/

Glassdoor. (2017). 50 Best Jobs in America for 2017. Retrieved from

https://www.glassdoor.com/blog/50-best-jobs-in-america-for-2017/

Godoy, J. F., Rodríguez, C. Y., & Zuleta, H. (2018). Security and Sustainable Development in

Bogotá, Colombia. Retrieved from https://www.dcaf.ch/sites/default/files/

publications/documents/SSR%20for%20Safer%20Cities_Bogota.pdf

Health Data Center : HDC, Ministry of Public Health. (2019). HDC Maternal and Child Health

(MCH). Retrieved from https://kkhdc.moph.go.th/download/uploads/

_91030.pdf

Höchtl, J., Parycek, P., & Schöllhammer, R. (2016). Big data in the policy cycle: Policy decision

making in the digital era. Journal of Organizational Computing and Electronic

Commerc, 26, NOS. 1–2, 147–169, http://dx.doi.org/10.1080/10919392.2015.1125187

IBM. 2018. Data Scientists Demand Survey for 2020 – IBM Predictions are in!. Retrieved

from https://data-flair.training/blogs/data-scientists-demand-predictions/

International Bank for Reconstruction and Development. (2016). BIG innovation challenge

Pioneering approaches to data-driven development. Retrieved from

http://documents.worldbank.org/curated/en/396861470905612761/pdf/107751-

REVISED-PUBLIC-BigData-Publication-e-version-FINAL.pdf

Johann Höchtl, Peter Parycek & Ralph Schöllhammer. (2016). Big data in the policy cycle:

Policy decision making in the digital era. Journal of Organizational Computing and

Electronic Commerc, 26, 147-169.

Kumar, A. (2020). Top 10 Data Science & Machine Learning Programming Languages for

Retrieved from https://medium.com/javarevisited/top-10-data-science-

machine-learning-programming-languages-for-2020-1bd02ee10e48

Lehigh University. (2018). Data Science and Analytics. Department of Industrial and

Systems Engineering, Lehigh University.

Manzoor, F., Wei, L., Nurunnabi, M., & Subhan, Q. A. (2019). Role of SME in Poverty

Alleviation in SAARC Region via Panel Data Analysis. Sustainability, 11, 6480.

doi:10.3390/bdcc3040050

McKinsey Global Institute. (2017). McKinsey Report Highlights the Impending Data Scientist

Shortage. Retrieved from https://tanzu.vmware.com/content/blog/mckinsey-report-

highlights-the-impending-data-scientist-shortage

Ministry of Digital Economy and Society. (2019). Government Big Data Analytics Framework

Version 1. Retrieved from http://www.dld.go.th/th/images/stories/downlaod/

bigdata/de/framework/25620405/BigdataframeworkV1.pdf

Numanović, A. (2017). Data Science: The Next Frontier for Data-Driven Policy Making?.

Retrieved from https://medium.com/@numanovicamar/https-medium-comnumanovicamar-data-science-the-next-frontier-for-data-driven-policy-making-8abe98159748

Office of the Press Secretary, The White House. (2012). Presidential Memorandum –

Building a 21st Century Digital Government. Retrieved from

https://obamawhitehouse.archives.gov/the-press-office/2012/05/23/presidential-

memorandum-building-21st-century-digital-government

Open Government Partnership. (2011). OGP’s Vision, Mission, and Strategy. Retrieved from

https://www.opengovpartnership.org/mission-and-strategy/

Phakthanakun, T. and Cheawcharnpraphan, T (2016). Open Government Data to

Open Government: Innovation in Thailand’s Public Administration in the

Digital Era. The 18th King Prajadhipok's Institute Academic Conference 2016

on the topic of Restoring Life to Democracy, King Prajadhipok's Institute,

-123.

Prapaporn Kullimratchai. (2018). Entering into the Era of Data Science. EAU HERITAGE

JOURNAL Science and Technology, 12(2), 120-129.

Rosen, S., Maske, M., Larson, B., Brennan, A. T., Tsikhutsu, I., Fox, M. P., Vezi, L., Bii, M.,

& Venter, D. F. (2019). Simplified clinical algorithm for identifying patients eligible

for same-day HIV treatment initiation (SLATE): Results from an individually

randomized trial in South Africa and Kenya. PLoS Medicine. Retrieved from

https://doi.org/10.1371/ journal.pmed.1002912

San Francisco’s Vision Zero High Injury Network. (2017). San FranciSco’S ViSion ZEro HigH

injury nEtwork: 2015-2017 update. Retrieved from https://www.sfdph.org/dph/

files/EHSdocs/PHES/VisionZero/Vision_Zero_High_Injury_Network.pdf

Sanders, M., Lawrence, J., Gibbons, D., & Calcraft, P. (2018). Using Data Science in Policy.

Retrieved from https://www.bi.team/wp-content/uploads/2017/12/BIT_DATA-

SCIENCE_WEB-READY.pdf

Secretariat of the House of Representatives (2016). Big data in the public sector.

Retrieved from https://library2.parliament.go.th/ejournal/content_af/2559/

dec2559-4.pdf

Settapong Malisuwan. (2017). Data Strategy. Retrieved from https://www.nbtc.go.th/

getattachment/News/Information/เอกสารแนบ.pdf.aspx

Silver, A., (2018). The Essential Data Science Venn Diagram. Retrieved from

https://www.kdnuggets.com/2019/02/essential-data-science-venn-diagram.html

Subash, S. P., Kumar, R. R., & Aditya, K. S. (2018). Satellite data and machine learning

tools for predicting poverty in rural India. Agricultural Economics Research Review,

(2), 231-240 DOI: 10.5958/0974-0279.2018.00040.X

The Revenue Department. (2016). Adjustment of the Revenue Department in the digital

economy and society era. Retrieved from https://www.dga.or.th/upload/

download/file_48416e2e4dda0dff76502330c49f3672.pdf

The World Bank. (2016). Open Traffic Data to Revolutionize Transport. Retrieved from

https://www.worldbank.org/en/news/feature/2016/12/19/open-traffic-data-to-

revolutionize-transport

Woodie, A. (2019). ‘Data Scientist’ Title Evolving Into New Thing. Retrieved from

https://www.datanami.com/2019/04/17/data-scientist-title-evolving-into-new-thing/

World Bank Group. (2017). Big Data Innovation in Public Services, Policy and Engagement.

the 2017 World Government Summit. Retrieved from http://documents.

worldbank.org/curated/en/176511491287380986/pdf/114011-BRI-3-4-2017-11-49-

-WGSBigDataGovernmentFinal.pdf

Translated Thai References

Civil Aviation Authority of Thailand. (2018). Strategy of the Civil Aviation Authority of

Thailand, 2019-2022. Retrieved from https://www.caat.or.th/wp-content/uploads/

/10/แผนยุทธศาสตร์-กพท.-ประจำปี-พ.ศ.-2562-2565.pdf

Department of Juvenile Observation and Protection, Ministry of Justice. (2018). Digital

action plan of Department of Juvenile Observation and Protection, Ministry of

Justice 2018-2020. Retrieved from http://www.djop.go.th/Djop/index.php

Digital Government Development Agency (Public Organization). (2017). Digital

Government towards Thailand. 4.0 Retrieved from https://www.dga.or.th/en/

content/2031/11769/

Digital Government Development Agency (Public Organization). (2019). MDE partners

with 20 government agencies and educational institutions to sign up to

develop Data Science workforce to support data analysis platform.

Retrieved from https://www.dga.or.th/th/content/913/13452/

Health Data Center :HDC, Ministry of Public Health. (2019). HDC Maternal and Child Health

(MCH). Retrieved from https://kkhdc.moph.go.th/download/uploads/

_91030.pdf

Höchtl, J., Parycek, P., & Schöllhammer, R. (2016). Big data in the policy cycle: Policy decision

making in the digital era. Journal of Organizational Computing and Electronic

Commerc, 26, NOS. 1–2, 147–169, http://dx.doi.org/10.1080/10919392.2015.1125187

International Bank for Reconstruction and Development. (2016). BIG innovation challenge

Pioneering approaches to data-driven development. Retrieved from

http://documents.worldbank.org/curated/en/396861470905612761/pdf/107751-

REVISED-PUBLIC-BigData-Publication-e-version-FINAL.pdf

Ministry of Digital Economy and Society. (2019). Government Big Data Analytics Framework

Version 1. Retrieved from http://www.dld.go.th/th/images/stories/downlaod/

bigdata/de/framework/25620405/BigdataframeworkV1.pdf

National Health Security Office. (2018). Digital development plan for the national health

security system of the National Health Security Office (NHSO) No. 1 (2018-2021).

Retrieved from https://www.nhso.go.th/frontend/page-contentdetail.aspx?

CatID=MTI4Mg==

Phakthanakun, T. and Cheawcharnpraphan, T (2016). Open Government Data to

Open Government: Innovation in Thailand’s Public Administration in the

Digital Era. The 18th King Prajadhipok's Institute Academic Conference 2016

on the topic of Restoring Life to Democracy, King Prajadhipok's Institute,

-123.

Prapaporn Kullimratchai. (2018). Entering into the Era of Data Science. EAU HERITAGE

JOURNAL Science and Technology, 12(2), 120-129.

Rosen, S., Maske, M., Larson, B., Brennan, A. T., Tsikhutsu, I., Fox, M. P., Vezi, L., Bii, M.,

& Venter, D. F. (2019). Simplified clinical algorithm for identifying patients eligible

for same-day HIV treatment initiation (SLATE): Results from an individually

randomized trial in South Africa and Kenya. PLoS Medicine. Retrieved from

https://doi.org/10.1371/ journal.pmed.1002912

Secretariat of the House of Representatives (2016). Big data in the public sector.

Retrieved from https://library2.parliament.go.th/ejournal/content_af/2559/

dec2559-4.pdf

Settapong Malisuwan. (2017). Data Strategy. Retrieved from https://www.nbtc.go.th/

getattachment/News/Information/เอกสารแนบ.pdf.aspx

The Revenue Department. (2016). Adjustment of the Revenue Department in the digital

economy and society era. Retrieved from https://www.dga.or.th/upload/

download/file_48416e2e4dda0dff76502330c49f3672.pdf

Tourism Authority of Thailand. (2019). Tourism smart data: Big data and tourism.

TAT Review. Retrieved from https://www.tatreviewmagazine.com/article/tourism-

smart-data-big-data/

Downloads

Published

2020-06-29

How to Cite

Bootnoi , N. ., Suthira Thipwiwatpotjana, . S. ., Kanjanapan, C., & Kanjanapan , P. . (2020). Data Science for Driving Public Policy. Local Administration Journal, 13(2), 203–220. Retrieved from https://so04.tci-thaijo.org/index.php/colakkujournals/article/view/241495