The Impact of Artificial Intelligence on Decision-Making Processes in Modern Small Business
Main Article Content
Abstract
In the digital economy, artificial intelligence (AI) technology has played a significant role in changing how businesses make decisions, especially for small enterprises with limited resources. The objectives of this research were to 1) study the level of technology acceptance factors among small businesses in Thailand; 2) examine the level of business decision-making among Thai small businesses; and 3) analyze the influence of variables affecting business decision-making among Thai small businesses. The research framework for this mixed-methods study is based on business decision-making concepts and the Unified Theory of Acceptance and Use of Technology. The sample group consisted of 420 small business entrepreneurs, selected through multi-stage sampling and purposive sampling methods. The research instruments included questionnaires and structured interviews. Data analysis was conducted using statistical methods. For quantitative research, frequency, percentage, mean, standard deviation, and multiple regression analysis were employed. For qualitative research, content analysis was used, followed by descriptive narrative writing.
The finding showed that 1) overall, small businesses had a high level of technology acceptance, 2) the level of business decision-making among small businesses was high overall, and 3) the top three variables influencing decision-making were facilitating conditions, performance expectancy, and price. The qualitative research revealed that AI contributes to improved accuracy in strategic planning; however, the deployment of AI remains challenged by infrastructure, knowledge, and budgetary limitations. These findings can guide strategies for promoting small businesses to adopt AI appropriately. This is crucial for enhancing competitiveness and facilitating the effective, cost-effective, and sustainable implementation of artificial intelligence.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Views and opinions appearing in the Journal it is the responsibility of the author of the article, and does not constitute the view and responsibility of the editorial team.
References
ขวัญชนก พุทธจันทร์. (2563). ปัญญาประดิษฐ์ (AI: Artificial Intelligence). สืบค้นเมื่อ 5 มกราคม 2568, จาก www.lib.ku.ac.th/2019/index.php/covid-19/1045-artificialintelligence
ทศพร มะหะหมัด และ มนัส สุทธิการ. (2563). ปัญญาประดิษฐ์การจัดการทรัพยากรบุคคลสมัยใหม่ในองค์กร. RMUTT Global Business and Economics Review, 15(1), 75-89. สืบค้นจาก https://so03.tci-thaijo.org/index.php/RMUTT-Gber/article/view/243488
สำนักงานพัฒนาธุรกรรมทางอิเล็กทรอนิกส์. (2564). รายงานผลการสำรวจมูลค่าพาณิชย์อิเล็กทรอนิกส์ในประเทศไทย ปี 2564. สืบค้นเมื่อ 7 มกราคม 2568, จาก https://www.etda.or.th/th/Useful-Resources/publications/Value-of-e-Commerce-Survey-in-Thailand-2019.aspx
สำนักงานส่งเสริมวิสาหกิจขนาดกลางและขนาดย่อม. (2566). รายงานสถานการณ์วิสาหกิจขนาดกลางและขนาดย่อม ปี 2566. กรุงเทพฯ: สำนักงานส่งเสริมวิสาหกิจขนาดกลางและขนาดย่อม.
Alsheibani, S., Cheung, Y., & Messom, C. (2020). Artificial intelligence adoption: A review of technologies and capabilities in organizations. Information Systems Frontiers, 22(2), 411–423. https://doi.org/10.1007/s10796-018-9870-4
Bharadwaj, A., El Sawy, O. A., Pavlou, P. A., & Venkatraman, N. (2013). Digital business strategy: Toward a next generation of insights. MIS Quarterly, 37(2), 471–482. https://doi.org/10. 25300/MISQ/2013/37:2.3
Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108-116.
Deloitte. (2021). The state of generative AI in the enterprise. Retrieved January 12, 2025, from https://www.deloitte.com/mu/en/services/consulting/services/state-of-generative-ai-in-enterprise.html
Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019). Re-examining the unified theory of acceptance and use of technology (UTAUT): Towards a revised theoretical model. Information Systems Frontiers, 21(3), 719-734. https://doi.org/10.1007/s10796-017-9774-y
Ghobakhloo, M., & Fathi, M. (2020). Corporate survival in Industry 4.0 era: The enabling role of lean-digitized manufacturing. Journal of Manufacturing Technology Management, 31(1), 1-30. https://doi.org/10.1108/JMTM-11-2018-0417
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. F. (2010). Multivariate data analysis: A global perspective. (7th ed.). New Jersey: Pearson Prentice Hall.
Huang, X., & Brown, A. (1999). An analysis and classification of problems in small business. International Small Business Journal, 18(1), 73-85. https://doi.org/10.1177/026624269918 1004
Ifinedo, P. (2012). Technology acceptance by health professionals in Canada: An analysis with a modified UTAUT model. In 2012 45th Hawaii International Conference on System Sciences (pp. 2937-2946). IEEE. https://doi.org/10.1109/HICSS.2012.556
Jarek, K., & Mazurek, G. (2020). Artificial intelligence in digital marketing: A review. Marketing Review, 30(1), 15-28. https://doi.org/10.18267/jcebr.213
OECD. (2021). The digital transformation of SMEs. OECD Studies on SMEs and Entrepreneurship. Retrieved September 15, 2024, from https://www.oecd-ilibrary.org/industry-and services/the-digital-transformation-of-smes_bdb9256a-en
Rana, N. P., Slade, E. L., Kitching, S., Dwivedi, Y. K., & Coombs, C. (2021). Determinants of digital transformation in the public sector: A systematic literature review. Journal of Enterprise Information Management, 34(3), 746-769. https://doi.org/10.1108/JEIM-08-2020-0327
Rogers, E. M. (2003). Diffusion of innovations. (5th ed.). New York: Free Press.
Sharda, R., Delen, D., & Turban, E. (2020). Business Intelligence, analytics, and data science: A managerial perspective. New York: Pearson.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178. http//doi.org/10.2307/41410412
Yamane, T. (1973). Statistics: An introductory analysis. (3rd ed.). New York: Harper & Row.