Development Project of Smart Pig Farm using LoRaWAN
Keywords:
Pig farm, Smart farm, Analysis weight by cameras, LoRaWAN GatewayAbstract
This project develops a prototype of smart farm pig using LoRaWAN Network to apply the LoRaWAN network to the farm prototype by installing 3 of LoRaWAN Gateway Stations to be a data transmission medium between all sensors such as temperature sensors, humidity sensors and electricity power meter sensor. Here, the CCTV cameras are used to analyze to find dead pigs and calculate the weights of pigs using photos. This is to track the behaviors of pigs, environment and electricity system. All data are shown on a online website accurately. The top-view and side-view photos of pigs can be analyzed to find the pig weights with an accuracy of +/- 1.86 Kilograms from the average pig weight of 1.5 kilograms. These parameters of temperature, humidity, electricity power and pig weight can be used in future to apply as a platform with other pig farms.
References
Bell, J., Dee, H.M. (2017). Watching plants grow – a position paper on computer vision and
Arabidopsis thaliana. IET Computer Vision. 11(2), 113-121
Chaudhury, A., Ward, Talasaz., Ivanov, C. A., Brophy, A.G., Grodzinski, M. B., Huner, N.P.A.,
Patel, R.V., Barron, J.L. (2017). Machine Vision System for 3D Plant Phenotyping.
Doi:1705.00540
Liu, T,. Wei, W., Chen, W., Chengming, S., Chen, C., Rui, W., Xinkai, Z., Wenshan, G. (2016). A
shadow-based method to calculate the percentage of filled rice grains. Biosystems
Engineering. 150 (2016), 79-88
French, G., Fisher, M., Mackiewicz, M., Needle, C. (2015). Convolutional neural networks for
counting fish in Fisheries surveillance video. In British Machine Vision Conference
Workshop. BMVA Press
Dawkins, M.S., Cain, R., Roberts, S.J. (2012). Optical flow, flock behaviour and chicken
welfare. Animal Behaviour. 84(1), July, 219-223
Kashiha, M., Bahr, C., Ott, S., Moons, C.P.H., Niewold, T.A., Ödberg, F.O., Berckmans, D. (2014).
Automatic weight estimation of individual pigs using image analysis. Computers and
Electronics in Agriculture. 107 (2014). 38–44
Yang, Y., Teng, G. (2007). ESTIMATING PIG WEIGHT FROM 2D IMAGES. Department of
Agricultural and Bioenvironmental Engineering. Agricultural University. PO Box 195.
Beijing. P.R. China
Liu, T., Teng, G., Fu, W. (2011). Research and Development of Pig Weight Estimation System
Based on Image. International Conference on Electronics Communications and
Control (ICECC). November
Li, Z., LuoGuanghui, C., Liu, T. (2014). Estimation of Pig Weight by Machine Vision: A Review.
Computer and Computing Technologies in Agriculture VII. CCTA 2013. IFIP Advances
in Information and Communication Technology. 420. Springer, Berlin. Heidelberg
Kongsro, J. (2014). Estimation of pig weight using a Microsoft Kinect prototype imaging
system. Computers and Electronics in Agriculture. 109, November, 32-35
ดำรง กิตติชัยศรี, อัจฉรา ภาณุรัตน์, จรัส สว่างทัพ และ นฤมล สมคุณา (2544). การพัฒนารูปแบบการเลี้ยง
สุกรพื้นเมืองตามปรัชญาของเศรษฐกิจพอเพียงของเกษตรกรรายย่อยในลุ่มน้ำโขงตอนล่างโดย
กระบวนการมีส่วนร่วม. มหาวิทยาลัยราชภัฏบุรีรัมย์
วันดี ทาตระกูล. (2551) การศึกษาศักยภาพด้านการเลี้ยงสุกรกึ่งชีวภาพเพื่อประยุกต์ใช้สำหรับเกษตรกรราย
ย่อย. คณะเกษตรศาสตร์ ทรัพยากรธรรมชาติและสิ่งแวดล้อม. มหาวิทยาลัยนเรศวร. พิษณุโลก
Hoste, Robert. Suh, Hyun. Kortstee, Harry. (2017). Smart Farming in Pig Production and
Greenhouse Horticulture. Inventory in the Netherlands. Wageningen. Wageningen
Economic Research (Wageningen Economic Research report. ISBN 9789463432184
Xiao, D., Yang, Q., Feng, J. Z, Ke, X., Du, Z. (2017). Design and implementation of large-scale
pig farm big data. The International Tri-Conference for Precision Agriculture
Downloads
Published
How to Cite
Issue
Section
License
The Office of the NBTC holds the copyright of articles appearing in the journal. The Office of the NBTC allows the public or individuals to distribute, copy, or republish the work under a Creative Commons license (CC), with attribution (BY), No Derivatives (ND) and NonCommercial (NC); unless written permission is received from the Office of the NBTC.
Text, tables, and figures that appear in articles accepted for publication in this journal are personal opinion and responsibility of the author, and not binding on the NBTC and the Office of the NBTC. In case of errors, each author is solely responsible for their own article, and not concerning the NBTC and the NBTC Office in any way.