Nonverbal Emotional Expression Database Development in the Context of Psychological Therapy

Authors

  • Konlakorn Wongpatikaseree Mahidol University
  • Panida Yomaboot Mahidol University
  • Napawan Munpansa Mahidol University
  • Narit Noohom Mahidol University
  • Sumeth Yuenyong Mahidol University

Keywords:

emotion, nonverbal expression, psychology, database, Artificial Intelligence (AI)

Abstract

This study aims to develop a database of nonverbal emotional expressions in the context of psychological counseling. The study focused on two nonverbal expression parameters: expressions conveyed through facial muscles and eye movements, and expressions conveyed through voice modulation. An experimental research method was employed by simulating a psychological counseling scenario among samples. During the 15-25-minute counselling session, each sample was randomly assigned to one mood induction based on the circumplex model of emotion theory. Their nonverbal emotional expressions were recorded in video clips. The records were then identified by individuals and psychologists according to the Facial Action Coding System and analysis of expressions through voice modulation. From the 15-25 minute video clips, the facial expressions dataset contained 3,000-8,000 sequential frames capturing various emotional states, while vocal expressions contained no linguistic meaning as they were incomplete phrases. The emotions identified from the records varied depending on different emotional inductions given to the samples. The nonverbal expression database could be used to develop an Artificial Intelligence (AI) model for emotion recognition exhibited by the Thai population in the provision of mental health services.

References

นันทวัช สิทธิรักษ์, กมลเนตร วรรณเสวก, กมลพร วรรณฤทธิ์, ปเนต ผู้กฤตยาคามี, สุพร อภินันทเวช, และ พนม เกตุมาน. (2558). จิตเวช ศิริราช DSM-5. ภาควิชาจิตเวชศาสตร์ คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล.

วรางคณา โสมะนันทน์, คาลอส บุญสุภา, และ พลอยไพลิน กมลนาวิน. (2564). การให้บริการการปรึกษาเชิงจิตวิทยาแบบออนไลน์: มิติ ใหม่ของการให้บริการปรึกษาเชิงจิตวิทยา. วารสารบัณฑิตศึกษา มหาวิทยาลัยราชภัฏวไลยอลงกรณ์ ในพระบรมราชูปถัมภ์, 15(1), 247-260. https://opac02.rbru.ac.th/cgi-bin/koha/opac-detail.pl?biblionumber=4465

Borges, V., Duarte, R. P., Cunha, C. A., & Mota, D. B. (2019). Are you lost? Using facial recognition to detect customer emotions in retail stores. Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services. CENTRIC 2019 (pp. 49-54). Valencia: Spain. https://www.researchgate.net/publication/338019900_Are_you_Lost_Using_Facial_Recognition_to_Detect_Customer_Emotions_in_Retail_Stores

Busso, C., Bulut, M., Lee, C. -C., Kazemzadeh, A., Mower, E., Kim, S., Chang, J. N., Lee, S., & Narayanan, S. S. (2008). IEMOCAP: Interactive emotional dyadic motion capture database. Language Resources and Evaluation, 42, 335-359. https://doi.org/10.1007/s10579-008-9076-6

Cordaro, D. T., Sun, R., Keltner, D., Kamble, S., Huddar, N., & McNeil, G. (2018). Universals and cultural variations in 22 emotional expressions across five cultures. Emotion, 18(1), 75-93. https://doi.org/10.1037/emo0000302

Ekman, P., & Friesen, W. V. (1978). Facial Action Coding System (FACS) [Database record]. APA PsycTests. https://doi.org/10.1037/t27734-000

Gross, J. J. (2015). Handbook of Emotion Regulation Second Edition. Guilford.

Kasuriya, S., Theeramunkong, T., Wutiwiwatchai, C., & Sukhummek, P. (2019). Developing a Thai emotional speech corpus from Lakorn (EMOLA). Language Resources and Evaluation, 53, 17-55. https://doi.org/10.1007/s10579-018-9428-9

Keltner, D., Sauter, D., Tracy, J., & Cowen, A. (2019). Emotional expression: Advances in basic emotion theory. Journal of Nonverbal Behavior, 43(2), 133-160. https://doi.org/10.1007/s10919-019-00293-3

Lapakko, D. (2007). Communication is 93% Nonverbal: An Urban Legend Proliferates. Communication and Theater Association of Minnesota Journal, 34, 7-19. https://cornerstone.lib.mnsu.edu/ctamj/vol34/iss1/2/

Luna-Jiménez, C., Griol, D., Callejas, Z., Kleinlein, R., Montero, J. M., & Fernández-Martínez, F. (2021). Multimodal emotion recognition on RAVDESS dataset using transfer learning. Sensors, 21(22), 7665. https://doi.org/10.3390/s21227665

Matsumoto, D., & Willingham, B. (2009). Spontaneous facial expressions of emotion of congenitally and noncongenitally blind individuals. Journal of Personality and Social Psychology, 96(1), 1-10. https://doi.org/10.1037/a0014037

Mollahosseini, A., Hasani, B., & Mahoor, M. H. (2019). AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild. IEEE Transactions on Affective Computing, 10(1), 18-31. https://doi.org/10.1109/TAFFC.2017.2740923

Russell, J. A. (1980). A circumplex model of affect. Journal of personality and Social Psychology, 39(6), 1161–1178. https://doi.org/10.1037/h0077714

Siedlecka, E., & Denson, T. F. (2019). Experimental methods for inducing basic emotions: A qualitative review. Emotion Review, 11(1), 87-97. https://doi.org/10.1177/1754073917749016

Sobin, C., & Alpert, M. (1999). Emotion in speech: The acoustic attributes of fear, anger, sadness, and joy. Journal of psycholinguistic research, 28(4), 347-365. https://doi.org/10.1023/a:1023237014909

Zeren, S. G., Erus, S. M., Amanvermez, Y., Genc, A. B., Yilmaz, M. B., & Duy, B. (2020). The Effectiveness of Online Counseling for University Students in Turkey: A Non-Randomized Controlled Trial. European Journal of Educational Research, 9(2), 825-834. https://doi.org/10.12973/eu-jer.9.2.825

Zhang, L., Walter, S., Ma, X., Werner, P., Al-Hamadi, A., Traue, H. C., & Gruss, S. (2016). “BioVid Emo DB”: A multimodal database for emotion analyses validated by subjective ratings. 2016 IEEE Symposium Series on Computational Intelligence. SSCI (pp. 1-6). IEEE. https://doi.org/10.1109/SSCI.2016.7849931

Downloads

Published

31-10-2024

How to Cite

Wongpatikaseree , K. ., Yomaboot, P., Munpansa, N., Noohom, N. ., & Yuenyong, S. . (2024). Nonverbal Emotional Expression Database Development in the Context of Psychological Therapy. Journal of Digital Communications, 8(2), 95–117. Retrieved from https://so04.tci-thaijo.org/index.php/NBTC_Journal/article/view/267216

Issue

Section

Research article