Improvement of Access to Social Welfare and Utilization of Digital Technology among the Elderly
Keywords:
the elderly, digital health technology, social welfare access, satisfaction, digital literacyAbstract
This article examines the barriers to social welfare access for the elderly andfactors influencing their satisfaction with the use of digital health technology in Thailand. A mixed-methods approach was employed by collecting quantitative data from a nationwide sample of 2,005 elderly individuals, and gathering qualitative data through in-depth interviews of 40 elderly participants in four provinces (Khon Kaen, Lampang, Phra Nakhon Si Ayutthaya and Songkhla). Qualitative data were analyzed using content analysis, and five key themes were identified: familiarity with basic technology; acceptance and understanding of digital health technology; satisfaction with technology usability; behavioral changes driven by health monitoring; and potential of the elderly in healthcare technology. Quantitative data were analyzed using multiple regression analysis. The findings indicate that the two primary barriers to accessing social welfare services for the elderly were health-related issues, which have a significant impact (B = 0.121, p < 0.001), and concerns about using technology (B = 0.048, p = 0.024). However, the use of technology was found to significantly reduce these concerns (B = 2.358, p = 0.026). Factors that increased the elderly’s satisfaction with digital health technology included effective access to welfare services (B = -0.073, p = 0.001), though this did not have a significant effect on overall satisfaction with technology usage (B = -0.011, p = 0.279).
References
ชาญณรงค์ ธีระโรจนารัตน์. (2564). อิทธิพลของการเปิดรับสื่อและการยอมรับนวัตกรรมนาฬิกาเพื่อสุขภาพที่มีต่อความตั้งใจซื้อของผู้บริโภคที่จะก้าวสู่วัยผู้สูงอายุ [วิทยานิพนธ์นิเทศศาสตรมหาบัณฑิต, จุฬาลงกรณ์มหาวิทยาลัย]. https://digital.car.chula.ac.th/chulaetd/7941/
บุญทิพย์ สิริธรังศรี และ ชุติวัฒน์ สุวัตถิพงศ์. (2566). ผู้สูงอายุในยุคดิจิทัล: ความท้าทายทางสุขภาพ. วารสารสุขภาพและอาหารเชิงสร้างสรรค์, 1(1), 51-63. https://he03.tci-thaijo.org/index.php/JHFC/article/view/605
วรินทร คุปตวาทิน. (2566). ผู้สูงอายุกับเทคโนโลยี. วารสารวิชาการสถาบันเทคโนโลยีแห่งสุวรรณภูมิ (สาขามนุษยศาสตร์และสังคมศาสตร์), 9(1), 328-334. https://so04.tci-thaijo.org/index.php/svittj/article/view/262404
สุรสิงห์ สมบัติ สุรนาถวัชวงศ์ และ สุภาภรณ์ สุดหนองบัว. (2565). การประยุกต์ใช้เทคโนโลยีดิจิทัลกับการดูแลสุขภาพของผู้สูงอายุในสถานการณ์การแพร่ระบาดของโรคติดเชื้อไวรัสโคโรนา 2019. วารสารเทคโนโลยีภาคใต้, 15(12), 129-138. https://so04.tci-thaijo.org/index.php/journal_sct/article/download/254109/174804/
Ahmad, A., Rasul, T., Yousaf, A., & Zaman, U. (2020). Understanding factors influencing elderly diabetic patients’ continuance intention to use digital health wearables: Extending the technology acceptance model (TAM). Journal of Open Innovation: Technology, Market, and Complexity, 6(3), 81. https://doi.org/10.3390/joitmc6030081
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
Anantanasuwong, D. (2021). Population ageing in Thailand: Critical issues in the twenty-first century. In M. S. Yu, & T. P. Chen (Eds.), Education for the elderly in the Asia Pacific (pp. 31-56). Springer. https://doi.org/10.1007/978-981-13-1108-4_3
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. https://doi.org/10.1191/1478088706qp063oa
Chanyawudhiwan, G., & Mingsiritham, K. (2022). An analysis of elderly use of digital technology in thailand. International Journal of Interactive Mobile Technologies, 16(7), 173-181. https://doi.org/10.3991/ijim.v16i07.28755
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
Elo, S., & Kyngäs, H. (2008). The qualitative content analysis process. Journal of Advanced Nursing, 62(1), 107-115. https://doi.org/10.1111/j.1365-2648.2007.04569.x
Field, A. (2013). Discovering statistics using IBM SPSS statistics (4th ed.). SAGE.
Frishammar, J., Essén, A., Bergström, F., & Ekman, T. (2023). Digital health platforms for the elderly? Key adoption and usage barriers and ways to address them. Technological Forecasting and Social Change, 189, 122319. https://doi.org/10.1016/j.techfore.2023.122319
Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. Aldine.
Global Market Insights. (2023). Digital health market size, share and growth analysis, 2023-2032.
Ha, J., & Park, H. K. (2020). Factors affecting the acceptability of technology in health care among older korean adults with multiple chronic conditions: A cross-sectional study adopting the senior technology acceptance model. Clinical Interventions in Aging, 15, 1873-1881. https://doi.org/10.2147/CIA.S268606
Kaewninprasert, K., Yamaqupta, N., Rungwaraphong, P., & Gapkird, M. (2023). The study of digital technology preparation for the aging society. Journal of Accountancy and Management, 15(2), 147-159. https://so02.tci-thaijo.org/index.php/mbs/article/view/253286
Kaewsamrit, A., Boontanon, N., Burnrangsri, R., Kamnuengkiattiwong, S., & Hanrob, S. (2023). The development of digital elderly health book (DEHB) program for elderly using, Thailand. Journal of Health Science and Alternative Medicine, 5(3), 1-9. https://he01.tci-thaijo.org/index.php/jhealthscialternmed/article/view/264580
Klimova, B., & Poulova, P. (2018). Older people and technology acceptance. In J. Zhou, & G. Salvendy (Eds.), Human aspects of IT for the aged population. Acceptance, communication and participation. ITAP 2018 (pp. 85-94). Springer. https://doi.org/10.1007/978-3-319-92034-4_7
Li, J., Ma, Q., Chan, A. H., & Man, S. S. (2019). Health monitoring through wearable technologies for older adults: Smart wearables acceptance model. Applied Ergonomics, 75, 162-169. https://doi.org/10.1016/j.apergo.2018.10.006
Ma, Q., Chan, A. H. S., & Chen, K. (2016). Personal and other factors affecting acceptance of smartphone technology by older Chinese adults. Applied Ergonomics, 54, 62-71. https://doi.org/10.1016/j.apergo.2015.11.015
Mulati, N., Aung, M. N., Field, M., Nam, E. W., Ka, C. M. H., Moolphate, S., Lee, H., Goto, Y., Kweun, N. H., Suda, T., Koyanagi, Y., Nagamine, Y., & Yuasa, M. (2022). Digital-based policy and health promotion policy in Japan, the Republic of Korea, Singapore, and Thailand: A scoping review of policy paths to healthy aging. International Journal of Environmental Research and Public Health, 19(24), 16995. https://doi.org/10.3390/ijerph192416995
Pallant, J. (2020). SPSS survival manual: A step-by-step guide to data analysis using IBM SPSS (6th ed.). Routledge.
Pang, C., Wang, Z. C., McGrenere, J., Leung, R., Dai, J., & Moffatt, K. (2021). Technology adoption and learning preferences for older adults: Evolving perceptions, ongoing challenges, and emerging design opportunities. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. CHI’21 (pp. 1-15). ACM. https://doi.org/10.1145/3411764.3445702
Phulkerd, S., Thapsuwan, S., Chamratrithirong, A., & Gray, R. S. (2021). Influence of healthy lifestyle behaviors on life satisfaction in the aging population of Thailand: A national population-based survey. BMC Public Health, 21, 43. https://doi.org/10.1186/s12889-020-10032-9
Rogers, E. M. (2010). Diffusion of innovations (5th ed.). Simon and Schuster.
Talukder, M. S., Sorwar, G., Bao, Y., Ahmed, J. U., & Palash, M. A. S. (2020). Predicting antecedents of wearable healthcare technology acceptance by elderly: A combined SEM-Neural Network approach. Technological Forecasting and Social Change, 150, 119793. https://doi.org/10.1016/j.techfore.2019.119793
The WHOQOL Group. (1998). Development of the World Health Organization WHOQOL-BREF quality of life assessment. Psychological Medicine, 28(3), 551-558. https://doi.org/10.1017/s0033291798006667
Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365. https://doi.org/10.1287/isre.11.4.342.11872
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412
Xie, L., Zhang, S., Xin, M., Zhu, M., Lu, W., & Mo, P. K.-H. (2022). Electronic health literacy and health-related outcomes among older adults: A systematic review. Preventive Medicine, 157, 106997. https://doi.org/10.1016/j.ypmed.2022.106997
Yamada, T., Chen, C. -C., Murata, C., Hirai, H., Ojima, T., Kondo, K., & Harris III, J. R. (2015). Access disparity and health inequality of the elderly: Unmet needs and delayed healthcare. International Journal of Environmental Research and Public Health, 12(2), 1745-1772. https://doi.org/10.3390/ijerph120201745
Yamane, T. (1973). Statistics: An introductory analysis (3rd ed.). Harper & Row.
Yu-Huei, C., Ja-Shen, C., & Ming-Chao, W. (2019). Why do older adults use wearable devices: A case study adopting the senior technology acceptance model (STAM). 2019 Portland International Conference on Management of Engineering and Technology. PICMET (pp. 1-8). https://doi.org/ 10.23919/PICMET.2019.8893767
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Digital Communications

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The Office of the NBTC holds the copyright of articles appearing in the journal. The Office of the NBTC allows the public or individuals to distribute, copy, or republish the work under a Creative Commons license (CC), with attribution (BY), No Derivatives (ND) and NonCommercial (NC); unless written permission is received from the Office of the NBTC.
Text, tables, and figures that appear in articles accepted for publication in this journal are personal opinion and responsibility of the author, and not binding on the NBTC and the Office of the NBTC. In case of errors, each author is solely responsible for their own article, and not concerning the NBTC and the NBTC Office in any way.