The Development of Artificial Intelligence (AI) System for Forensic Investigation of Sex Crimes

Authors

  • Narit Hnoohom Mahidol University
  • Papanu Suttipasit Mahidol University
  • Sumeth Yuenyong Mahidol University
  • Konlakorn Wongpatikaseree Mahidol University
  • Eakkachai Warinsiriruk Mahidol University
  • Virach Sornlertlamvanich Mahidol University

Keywords:

Forensic investigation system, Artificial Intelligence (AI), Sperm

Abstract

     This research aimed to develop an Artificial Intelligence (AI) system for sperm identification to be used as an evidence or an important indicator in sexual offense cases, and to study the feasibility of the system. The research was divided into two parts. The first part was to develop an Artificial Intelligence system for sperm detection and a website for sperm detection, using applied research method. The second part included the tool familiarization training for forensic scientists. The study found that the Artificial Intelligence system could lessen the steps of sperm detection process. If the digital scanned image from microscope slides shown more than two sperm heads, it could be assumed that a sexual abuse happened. Developed on the YOLOv5m, the precision of the system was up to 97.4%. It could also be accessed on website. Forensic scientists who were trained were satisfied with the system as it could accelerate forensic investigation service, increase chances for proving an offender’s guilt, and reduce opportunities of the offender to commit other crimes. In addition, waste of time and human resources could be avoided.

References

คณะวิทยาศาสตร์ประยุกต์ มหาวิทยาลัยธุรกิจบัณฑิตย์. (2559). การพัฒนาแนวทางการรับฟังพยานหลักฐานทางนิติวิทยาศาสตร์เพื่อพิสูจน์ความจริงในคดี. สถาบันวิจัยและพัฒนารพีพัฒนศักดิ์. https://rabi.coj.go.th/th/content/category/detail/id/39/iid/176580

ฉัตรสุมน พฤฒิภิญโญ และนิทัศน์ ศิริโชติรัตน์. (2557). กระบวนการสอบสวนและหลักฐานคดีความผิดทางเพศ. Journal of Thai Justice System, 7(1), 17-33. https://so04.tci-thaijo.org/index.php/JTJS /article/view/246204

เปิดสถิติความรุนแรงทางเพศของสังคมไทยยังน่าเป็นห่วง. (2561). BLT BANGKOK. https://www.bltbangkok.com/news/4510/

สำนักข่าวไทย. (2563). สถิติความผิดเกี่ยวกับเพศ ปี 2560-2563. https://tna.mcot.net/crime-530217

อานนท์ จำลองกุล. (2560). การดูแลผู้ถูกล่วงละเมิดทางเพศ: ร่างกาย จิตใจ และการเยียวยาทางกฎหมาย. Chulalongkorn Medical Journal, 61(5), 603-618. https://digital.car.chula.ac.th/clmjournal/vol61/ iss5/7/

Allery, J. P., Telmon, N., Mieusset, R., Blanc, A., & Rougé, D. (2001). Cytological detection of spermatozoa: comparison of three staining methods. Journal of forensic sciences, 46(2), 349-351. https://pubmed.ncbi.nlm.nih.gov/11305439/

Dobrovolny, M., Benes, J., Langer, J., Krejcar, O., & Selamat, A. (2023). Study on sperm-cell detection using YOLOv5 architecture with labaled dataset. Genes 2023, 14(2), 451. https://doi.org/10.3390/genes14020451

Feng, L., Xu, C., Zeng, X., Zhang, H., Yang, F., Li, W., Tu, Z., Li, C., & Hu, L. (2014). Y-chromosomal haplotyping of single sperm cells isolated from semen mixtures - a successful identification of three perpetrators in a multi-suspect sexual assault case. Croatian Medical Journal, 55(5), 537-41. https://doi.org/10.3325/cmj.2014.55.537

Golomingi, R., Haas, C., Dobay, A., Kottner, S., & Ebert, L. (2022). Sperm hunting on optical microscope slides for forensic analysis with deep convolutional networks – a feasibility study. Forensic Science International: Genetics, 56, 102602. https://doi.org/10.1016/j.fsigen.2021.102602

Hicks, S. A., Andersen, J. M., Witczak, O., Thambawita, V., Halvorsen, P., Hammer, H. L., Haugen, T. B., & Riegler, M. A. (2019). Machine learning-based analysis of sperm videos and participant data for male fertility prediction. Scientific Reports, 9, 1-10. https://doi.org/10.1038/s41598-019-53217-y

Iqbal, I., Ghulam, M., & Jinwen, M. (2020). Deep learning-based morphological classification of human sperm heads. Diagnostics, 10(5), 325. https://www.mdpi.com/2075-4418/10/5/325

Javadi, S., & Mirroshandel, S. A. (2019). A novel deep learning method for automatic assessment of human sperm images. Computers in biology and medicine, 106, 182-194. https://doi.org/10.1016/j.compbiomed.2019.04.030

Mohammadi, M. R., Rahimzadeh, M., & Attar, A. (2020). Sperm detection and tracking in phase-contrast microscopy image sequences using deep learning and modified CSR-DCF. arXiv. https://doi.org/10.48550/arXiv.2002.04034

Ramachandram, D., & Taylor, G. W. (2017). Deep multimodal learning: a survey on recent advances and trends. IEEE Signal Processing Magazine, 34(6), 96–108. https://ieeexplore.ieee.org/document/8103116

Tobón, D. P., Hossain, M. S., Muhammad, G., Bilbao, J., & Saddik, A. E. (2022). Deep learning in multimedia healthcare applications: a review. Multimedia Systems, 28(4), 1465-1479. https://doi.org/10.1007/s00530-022-00948-0

World Health Organization, HRP. (2021). WHO laboratory manual for the examination and processing of human semen (6th ed.). Geneva: World Health Organization. https://www.who.int/publications/i/item/9789240030787

World Population Review. (2021). Rape statistics by country 2023. https://worldpopulationreview.com/country-rankings/rape-statistics-by-country

Xu, C., & Jiang, X. (2022). iMedBot: A web-based intelligent agent for healthcare related prediction and deep learning. arXiv. https://doi.org/10.48550/arXiv.2210.05671

Downloads

Published

29-11-2023

How to Cite

Hnoohom, N., Suttipasit, P., Yuenyong, S., Wongpatikaseree, K., Warinsiriruk, E., & Sornlertlamvanich, V. (2023). The Development of Artificial Intelligence (AI) System for Forensic Investigation of Sex Crimes. Journal of Digital Communications, 7(2), 46–68. Retrieved from https://so04.tci-thaijo.org/index.php/NBTC_Journal/article/view/265059

Issue

Section

Research article