FACTORS IN CHOOSING FAMILY TOURIST ATTRACTIONS IN CHAIYAPHUM: CHAID DECISION TREE ANALYSIS
Keywords:
Location Selection Factors, Family Tourism, Decision TreeAbstract
This research article aimed: 1. To study the factors influencing family tourism destination choices in Chaiyaphum Province; and 2. To assess the accuracy of the predictive model using the CHAID (Chi-Squared Automatic Interaction Detection) decision tree and a cross-sectional survey design. The sample consisted of 909 parents with children aged 1-12 years who had traveled in Chaiyaphum Province during 2023–2024. Data were collected using a 5-point Likert scale questionnaire.
The findings revealed that the majority of parents were female (73.4%), aged between 20-39 years (54%), held a bachelor’s degree (56.2%), and traveled by private car (85.3%). Most incurred travel expenses exceeding 2,000 baht per trip (71.8%) and traveled on weekends (59.2%). The CHAID model indicated that travel expenses were the primary factor influencing destination choice, followed by vehicle type, monthly income, and education level. The model demonstrated high classification accuracy, particularly for Group 3, with an accuracy rate of 97.8%, and an acceptable risk estimate (0.20–0.30). These research findings could be applied to inform tourism planning and policy development in Chaiyaphum Province to effectively meet the needs of the target parent group.
References
พระมหาสังคม ชยานนฺโท และคณะ. (2566). ศึกษาศักยภาพแหล่งท่องเที่ยวทางธรรมชาติและวัฒนธรรมในจังหวัดชัยภูมิ. Journal of Modern Learning Development, 8(5), May, 251-267.
รัตนาวดี พานทอง. (2565). การจำแนกประเภทข้อมูลการท่องเที่ยวในจังหวัดพะเยาโดยการใช้เทคนิคต้นไม้ตัดสินใจ. วารสารวิชาการเพื่อการพัฒนานวัตกรรมเชิงพื้นที่ (JSID), 40-54.
วีรยา มีสวัสดิกุล และคณะ. (2566). เราเที่ยวด้วยกัน: ประสบการณ์ร่วมกันของนักท่องเที่ยวกลุ่มครอบครัวหลายช่วงวัย. วารสารมนุษยศาสตร์และสังคมศาสตร์ มหาวิทยาลัยนครพนม, 13(3), 132-148.
สำนักงานสถิติแห่งชาติ. (2565). สถิติประชากรจังหวัดชัยภูมิ. สืบค้นเมื่อ 20 ธันวาคม 2567 จาก https://www.nso.go.th
Akin et al. (2017). Use of RSM and CHAID data mining algorithm for predicting mineral nutrition of hazelnut. Plant Cell Tissue Organ Cult. 128(2), 303-316.
Little, R. J. & Rubin, D. B. (2019). Statistical Analysis with Missing Data (3rd ed.). Hoboken, NJ: John Wiley & Sons.
Magidson, J. & Vermunt, J. K. (2005). An Extension of the CHAID Tree-based Segmentation Algorithm to Multiple Dependent Variables. Berlin: Springer.
Malkewitz et al. (2023). Estimating reliability: A comparison of Cronbach's α, McDonald's ωt and the greatest lower bound. Social Sciences & Humanities Open, 7(1), 1-10.
Mayer, M. & Vogt, L. (2016). Economic effects of tourism and its influencing factors: An overview focusing on the spending determinants of visitors. Zeitschrift für Tourismuswissenschaft, 8(2), 169-198.
Mendes, A. B. & Themido, I. H. (2004). Multi-outlet retail site location assessment. International Transactions in Operational Research, 11(1), 1-18.
Miyakawa, E. & Oguchi, T. (2022). Family tourism improves parents’ well-being and children’s generic skills. Tourism Management, 88(1), 1-6.
Mwale et al. (2022). Factors that affect travel behaviour in developing cities: A methodological review. Retrieved January 20, 2025, from https://doi.org/10.1016/j.trip.2022.100683
Nengsih et al. (2022). Comparative Analysis to Determine the Best Accuracy of Classification Methods. ILKOM Jurnal Ilmiah, 14(2), 134-141.
Omerašević, A. & Selimović, J. (2020). Classification Ratemaking Using Decision Tree in The Insurance Market of Bosnia and Herzegovina. South East European Journal of Economics and Business, 15(2), 124-139.
Soper, D. (2024). A-priori sample size calculator for structural equation models. Retrieved January 20, 2025, from https://shorturl.asia/p8tGE
Wang, Y. & Li, M. (2020). Family Identity Bundles and Holiday Decision Making. Journal of Travel Research, 60(3), 486-502.
Yang et al. (2020). Comparative study of three decision algorithms for predicting traffic accidents. Retrieved January 20, 2025, from https://shorturl.asia/pdr4l
Zhang et al. (2019). comparative study of decision tree algorithms for predicting customer purchase behavior. International Journal of Industrial Engineering and Computer, 10(1), 299-310.
Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. Journal of Applied Statistics, 29(2), 119-127.
Biggs, D. et al. (1991). A method of choosing multiway partitions for classification and decision trees. Journal of Applied Statistics, 18(1-2), 49-62.
Lemmens, A. & Croux, C. (2006). Bagging and boosting classification trees to predict churn. Journal of Marketing Research, 43(2), 276-286.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Interdisciplinary Innovation Review

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
In order to conform the copyright law, all article authors must sign the consignment agreement to transfer the copyright to the Journal including the finally revised original articles. Besides, the article authors must declare that the articles will be printed in only the Journal of interdisciplinary Innovation Review. If there are pictures, tables or contents that were printed before, the article authors must receive permission from the authors in writing and show the evidence to the editor before the article is printed. If it does not conform to the set criteria, the editor will remove the article from the Journal without any exceptions.


