Advancing National Defense Capabilities through Terahertz Technology: Opportunities, Challenges, and Future Directions
Main Article Content
Abstract
This article aims to analyze the potential and limitations of applying terahertz (THz) technology in enhancing national defense capabilities. The study focuses on: 1) the physical principles of THz waves, 2) THz wave generation and detection technologies, 3) applications in radar systems, explosive and chemical detection, and military communications, and 4) challenges and future development directions. The research methodology involves a comprehensive literature review and analysis of recent case studies from international developments. The analysis reveals that THz technology shows high potential in improving the detection of new security threats, including more accurate detection of stealth aircraft and small drones, enhanced analysis of explosive and hazardous chemical compositions, and the development of high-speed, secure communication systems. However, significant challenges remain in production costs, technical limitations, and potential health and environmental impacts that require further study. This article presents future research and development directions, as well as policy considerations for the effective and responsible implementation of THz technology in national defense. The findings of this study are valuable for researchers, policymakers, and security practitioners in strategic planning, resource allocation for research and development, and preparing for future threats.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความ ภาพ ตาราง กราฟ ข้อเขียน หรือความคิดเห็นในวารสารฉบับนี้เป็นของผู้เขียนไม่ผูกพันกับสถาบันวิชาการป้องกันประเทศ และทางวิชาการแต่อย่างใดReferences
ศศวิภา หาสุุข. (2019). “เทคโนโลยีเทระเฮิรต์” กับการประยุุกต์ใช้งานในประเทศไทย. สืบค้นจาก https://www.nectec.or.th/research/research-project/terahertz-for-thailand.html
Anderson, A., Anderson, C. R., & Owen, H. S. (2024). Modeling Atmospheric Effects on Over Land UHF Propagation Links. In 2024 18th European Conference on Antennas and Propagation (EuCAP) (p.1-5). Glasgow: IEEE. https://doi.org/10.23919/eucap60739.2024.10501148
Bruni, S., Campo, M. A., Tolin, E., & Litschke, O. (2022). Antenna Integration in sub-Terahertz Radar Systems. In 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (p.1-3). Delft: IEEE. https://doi.org/10.1109/irmmw-thz50927.2022.9896006
Chasnyk, V. I., Chasnyk, D. V., & Kaidash, O. M. (2023). Complex Permittivity in the AlN–SiC Composite in the 1–100 GHz Microwave Frequency Range. Powder Metallurgy and Metal Ceramics, 62(2), 66-76. https://doi.org/10.1007/s11106-023-00370-9
Chen, H., Li, X., Wang, K., Sun, Z., & Cui, G. (2022). Computational efficient segmented integration method for high-speed maneuvering target detection. Signal Processing, 195, 108475. https://doi.org/10.1016/j.sigpro.2022.108475
Chen, X., Sun, Q., Wang, J., & Pickwell-MacPherson, E. (2020). Skin Surface Feature Influence on Terahertz in vivo Measurements. In 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (p.1-2). New York: IEEE. https://doi.org/10.1109/irmmwthz46771.2020.9370690
Choi, H., & Son, J. H. (2014). Terahertz Sources and Detectors. In J. H. Son (Ed.), Terahertz Biomedical Science and Technology. Boca Raton: CRC Press. https://doi.org/10.1201/b17060-7
Dailey, J. D., & Phelps, J. R. (2021). 3 The Creation of the Department of Homeland Security. Boulder, USA: Lynne Rienner Publishers. https://doi.org/10.1515/9781685851026-005
Dash, S., & Patnaik, A. (2020). Behavior of graphene based planar antenna at microwave and terahertz frequency. Photonics and Nanostructures - Fundamentals and Applications, 40, https://doi.org/10.1016/j.photonics.2020.100800
Grand View Research. (2024). Military Radar Market Analysis By Type (Ground-based, Naval, Airborne, Space-based), And Segment Forecasts To 2024.
Institute of Electrical and Electronics Engineers. (2020). 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (p.1-984). New York: IEEE. doi:10.1109/IRMMWTHz46771.2020.9370803
_______. Microwave Techniques, Antennas and Radar Systems. (2019) In IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON) (p.17). Lviv: IEEE. https://doi.org/10.1109/ukrcon.2019.8879893
Ito, Y., & Monnai, Y. (2020). Unambiguous Detection of Multiple Objects Using Leaky-Wave Terahertz Radar Based on Stepwise Signal Processing. In 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (p.1). New York: IEEE. https://doi.org/10.1109/irmmw-thz46771.2020.9370429
Jagtap, V. S., Rucker, H., Heinemann, B., Grzyb, J., & Pfeiffer, U. R. (2022). Monolithically Integrated Silicon Photodiodes For Terahertz Electronic-Photonic Integrated Systems. In 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (p.1-4). Delft: IEEE. https://doi.org/10.1109/irmmw-thz50927.2022.9895657
Kameshkov, O., Gerasimov, V., & Kuznetsov, S. (2023). Studying Sensor Capabilities of Archimedean Spiral Metameterials with C-Shaped Resonator using Thin Dielectric Films in the Terahertz Frequency Range. In The 5-th lnternational Conference Terahertz and Microwave Radiation: Generation, Detection and Applications (TERA-2023) (p.10). https://shorturl.asia/qpV8A
Kida, N., Miyamoto, T., & Okamoto, H. (2022). Emission of Terahertz Electromagnetic Waves: A New Spectroscopic Method to Investigate Physical Properties of Solids. Journal of the Physical Society of Japan, 91(11), https://doi.org/10.7566/JPSJ.91.112001
Liu, K., Gong, Z., & Yi, J. (2021). Direct-detection Single-photon Radar at Terahertz Frequencies. In 2021 13th Global Symposium on Millimeter-Waves & Terahertz (GSMM) (p.1-3). Nanjing: IEEE. https://doi.org/10.1109/gsmm53250.2021.9511900
Lukin, K. (2016). Quantum Radar vs Noise Radar. In 2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW) (p.1-4). Kharkiv: IEEE. https://doi.org/10.1109/msmw.2016.7538137
Mounaix, P. (2022). Advanced Data Processing For Tomography and 3D Rendering With Terahertz Waves. In 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMWTHz) (p.1-2). Delft: IEEE. doi:10.1109/IRMMW-THz50927.2022.9895653
Pellegrino, P. M., Holthoff, E. L., & Farrell, M. E. (2015). Detection and Recognition of Explosives Using Terahertz- Frequency Spectroscopic Techniques. In Laser-Based Optical Detection of Explosives. Boca Raton: CRC Press. https://doi.org/10.1201/9781315215280
Saha, A. (2020). Advances in Terahertz Imaging. In A. Biswas, A. Banerjee, A. Acharyya, H. Inokawa, & J. Roy (eds). Emerging Trends in Terahertz Solid-State Physics and Devices. https://doi.org/10.1007/978-981-15-3235-1_10
Sandi, E., Maruddani, B., & Khairunisa, N. (2020). Complementary Split Ring Resonator on the Ground Plane for Wearable Antenna. In 2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET) (p.66-69). Tangerang: IEEE. https://doi.org/10.1109/icramet51080.2020.9298691
Tong, P., Xu, L., & Wei1, Y. (2022). A doppler modified multipath data association algorithm for shipborne high frequency hybrid sky-surface wave radar. In International Conference on Radar Systems (RADAR 2022). https://doi.org/10.1049/icp.2023.1298
Yarba, J. (2021). Comments on Several FTF Annihilation Model Parameters. In Conference: Comments on Several FTF Annihilation Model Parameters (p.1-6). Illinois: Fermi National Accelerator Lab. https://doi.org/10.2172/1827847
Yurduseven, O., Fromenteze, T., Cooper, K., Chattopadhyay, G., & Smith, D. R. (2019). From microwaves to submillimeter waves: modern advances in computational imaging, radar, and future trends. In Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XII. San Francisco: SPIE OPTO. https://doi.org/10.1117/12.2515643
Zhang, S., Cui, Y., Wang, S., Chen, H., Liu, Y., Qin, W., ...Tao, Z. (2023). Nonrelativistic and nonmagnetic terahertz-wave generation via ultrafast current control in anisotropic conductive heterostructures. Advanced photonics. Advanced Photonics, 5(5), https://doi.org/10.1117/1.AP.5.5.056006