การออกแบบและพัฒนาในระดับนำร่องในการฆ่าเชื้อจุลินทรีย์ในน้ำส้มโดยใช้สนามไฟฟ้าพัลส์
Design and development of a pilot-scale pulsed electric field processing system for microorganism inactivation in orange juice
คำสำคัญ:
Pulsed electric field, Microorganisms, Pasteurization, Orange Juiceบทคัดย่อ
In the beverage processing industry worldwide, orange juice is the most widely manufactured juice. Conventional preservation methods such as thermal pasteurization ensure safety and extend the shelf life of orange juice. However, they often lead to detrimental changes in the sensory qualities of the food product. High-quality and nutritious foods, with fresh flavor, texture, and color, having minimal or no chemical preservatives, and above all safe for consumption, are required by consumers Chan et al (1997); Michelle et al (2004); Cortes et al (2008). Therefore, newly developed food technologies usually focus on preservation while maintaining food quality attributes. Non-thermal pasteurization by pulsed electric field (PEF) processing has already been introduced. It can alternatively be applied to deliver safe and shelf-stable products such as juices, milk, yogurt, soups, and liquid eggs with fresh-like character, high nutritional value, and minimal or no chemical preservatives Sale et al (1968); Hulsheger et al (1981); Fleischman (2014); Jeyamkondan et al (1999). The PEF pasteurization process utilizes micro-second (µs) high-voltage pulses, producing high electric field strength (> 20 kV/cm) between the two electrodes. These electric pulses are applied to food products, at temperatures below thermal pasteurization, efficiently inactivating contaminating microorganisms without significantly affecting the quality of the food product by a phenomenon known as the electroporation phenomenon Sale et al (1968); Hulsheger et al (1981); Fleischman (2014); Jeyamkondan et al (1999). Generally, a PEF processing system consists of a high-voltage power source, an energy storage capacitor bank, a charging resistor, a discharge switch, a pulse controller, and a treatment chamber. Electrical energy from the power supply was stored in the capacitor and was then discharged through the treatment chamber to generate electric field strengths in the food product. The survival rate of the number of microorganisms in food products treated by PEF processing depends on process parameters, including electric field strength, total treatment time, pulse width, pulse waveform, and food conductivity Fleischman (2014). In the past several decades, there have been numerous research studies and developments on the PEF processing system for microorganism inactivation of food juice products Sale et al (1968); Hulsheger et al (1981); Fleischman (2014); Jeyamkondan et al (1999). (Ohshima et al, 1997, 2007); Sen-in et al (2012); Panyamuangjai
et al (2012); Intra et al 2015; Mcdonald et al (2000); Gupta et al (2003);
Qin et al 1998. Available commercial-scale PEF processing has been designed to inactivate microorganisms in tomato-orange juices Min et al (2003); Linton et al (2003). However, these commercial-scale PEF systems tend to be relatively large units, which are quite expensive with typical starting prices greater than ten thousand U.S. dollars. In Thailand, commercial-scale PEF processing systems are not available for the micro, small, and medium-sized enterprises in the food and drink industries because of their high cost and enormous size. Therefore, a PEF processing system for micro, small, and medium-sized enterprises in the food and drink industries must have a low cost, a small and simple system, easy to use and clean, and its maintenance must be possible by low-skilled laborers.
This study aimed to develop and investigate a low-cost, simple PEF processing system for the inactivation of microorganisms in orange juice. In this paper, A detailed description of the pulsed electric field system design is also presented. The MATLAB/Simulink was used to simulate the 3-phase pulse high-voltage source circuit. The inactivation of endogenous microorganisms (E - coli) in orange juice and the quality of orange juice were experimentally investigated, and the quality of pulsed electric field processed orange juice was compared with that of thermally processed orange juice.
เอกสารอ้างอิง
Chan, M. M., and Martinelli, C. K. (1997). The effect of color on perceived flavor intensity and acceptance of foods by young adults and elderly adults. Journal of the American Dietetic Association, 97(6), 657 – 9. doi: https://doi.org/10.1016/S0002-8223(97)00165-X.
Michelle, K. B., Katherine, Z., Howe, E., Goicoechea, D., Paramanandhan, P., Stockman, R., Sellahewa, J., Szabo, E. A., Johnson, R. A. and Stewart, C. M. (2004). The effect of high pressure processing on the microbial, physical and chemical properties of Valencia and Navel orange juice. Innovative Food Science and Emerging Technologies, 5(2), 135-149. doi: https://doi.org/10.1016/j.ifset.2003.11.005.
Cortes, C., Esteve, M. J., and Frígola, A. (2008). Color of orange juice treated by high intensity pulsed electric fields during refrigerated storage and comparison with pasteurized juice. Food Control, 19 (2), 151 – 158. doi: https://doi.org/10.1016/j.foodcont.2007.03.001.
Sale, A. J. H., and Hamilton, W. A. (1968). Effects of high electric fields on microorganisms. III. Lysis of erythrocytes and protoplasts. Biochimical et Biophysica Acta, 163(1), 37 – 43. doi: https://doi.org/10.1016/0005-2736(68)90030-8.
Hulsheger, H., Potel, J., and Niemann, E. G. (1981). Killing of bacteria with electric pulses of high field strength. Radiation and Environmental Biophysics, 20, 53 – 65. doi: https://doi. org /10. 1007 /BF01323926.
Fleischman, G. J. (2014). HEAT TREATMENT OF FOODS | Action of Microwaves, Journal of ELSEVIER, 2, 1036-1041, https://doi.org/10.1016/B978-0-12-384730-0.00160-9.
Jeyamkondan, S., Jayas, D. S., and Holley, R. A. (1999). Pulsed electric field processing of foods: A review. Journal of National Library of Medicine, 62(9), 1088 – 1096. doi: https://doi.org /10.4315/0362-028X-62.9.1088
Ohshima, T.,Tamura, T., and Sato, M. (2007). Influence of pulsed electric field on various enzyme activities. Journal of Electrostatics, 65 (3), 156 – 161. doi: https://doi.org /10.1016/j.elstat.2006.07.005.
Ohshima, T., Sato, K., Terauchi, H. and Sato, M. (1997). Physical and chemical modifications of high-voltage pulse sterilization. Journal of Electrostatics, 42 (1–2), 159 – 166. doi: https://doi. org /10.1016/S0304-3886(97)00152-6.
Sen-in, P., Pinchai, P., Chaekoe, O., Yawootti, A. and Intra, P. (2012). Design of a pulsed electric field treatment chamber for a liquid foods pasteurization process. KMUTT Research and Development Journal, 35 (2), 253 – 267.
Panyamuangjai, V., Janthara, S., Kusuya, R., Yawootti, A., & Intra, P. (2012). Application of pulsed electric field for milk pasteurization. KMUTT Research and Development Journal, 35 (4), 469 – 484.
Intra, P., Manopian, P., Pengmanee, C., Yawootti, A., Asanavijit, V., and Somsri, N. (2015). Inactivation of E. coli for milk tea pasteurization by pulsed electric field. Journal of KMUTNB, 25, 425 – 437.
Mcdonald, C., Lloyd, S., Vitale, M., Petersson, K. and Innings, F. (2000). Effects of pulsed electric fields on microorganisms in orange juice using electric field strengths of 30 and 50 kV/cm. Journal of Food Science, 65, 984 – 989. doi: https://doi.org/10.1111/j.1365-2621.2000.tb09404.x.
Gupta, B. S., Masterson, F. and T. R. A. Magee, (2003). Inactivation of E. coli K12 in apple juice by high voltage pulsed electric field. European Food Research and Technology, 217, 434 – 437. doi: https://doi.org/10.1007/s00217-003-0756-6.
Qin, B. - L., Barbosa-Canovas, G.V., Swanson, B.G., Pedrow, P. D., and Olsen, R. G. (1998). Inactivating microorganisms using a pulsed electric field continuous treatment system. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 34(1), 43 – 50. doi: 10.1109/28.658715.
Min, S., Jin, Z. T. and Zhang, Q. H. (2003). Commercial scale pulsed electric field processing of tomato juice. Journal of Agricultural and Food Chemistry, 51 (11), 3338 – 3344. doi: https://doi.org/10.1021/jf0260444.
Min, S., Jin, Z.T., Min, S.K., Yeom, H. and Zhang, Q.H. (2003). Commercial-scale pulsed electric field processing of orange juice. Journal of Food Science, 68 (4), 1265 – 1271. doi: https://doi.org/10.1111/j.1365-2621.2003.tb09637.x.
Linton, M., Mcclements, J.M.J. and Patterson, M.F. (1999). Inactivation of Escherichia coli O157:H7 in orange juice using a combination of high pressure and mild heat. Journal of Food Protection, 62(3), 277 – 279. doi: https://doi.org/10.4315/0362-028X-62.3.277.
Char, C. D., Mitilinaki, E., Guerrero, S. N., and Alzamora, S. M. (2010). Use of high-intensity ultrasound and UV-C light to inactivate some microorganisms in fruit juices. Food and Bioprocess Technology, 3(6), 797 – 803. doi: https://doi.org/10.1007/s11947-009-0307-7.
FnBnews.com 2025. Available Source:
https://www.fnbnews.com /Top – News / customization - of-flavours – to – gain - prominence-in-fruit-juice-market-82472.
ดาวน์โหลด
เผยแพร่แล้ว
รูปแบบการอ้างอิง
ฉบับ
ประเภทบทความ
สัญญาอนุญาต
ลิขสิทธิ์ (c) 2025 สถาบันวิจัยและพัฒนา มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา

อนุญาตภายใต้เงื่อนไข Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
กองบรรณาธิการขอสงวนสิทธิ์ในการปรับปรุงแก้ไขตัวอักษรและค่าสะกดต่าง ๆ ที่ไม่ถูกต้อง และต้นฉบับที่ได้รับการตีพิมพ์ในวารสารเทคโนโลยีและนวัตกรรม ถือเป็นกรรมสิทธิ์ของสถาบันวิจัยและพัฒนา มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา และผลการพิจารณาคัดเลือกบทความตีพิมพ์ในวารสารให้ถือเป็นมติของกองบรรณาธิการเป็นที่สิ้นสุด

