A STUDY OF BEHAVIORAL INTENTION TO USE AUGMENTED REALITY FOR APPAREL PRODUCTS SHOPPING ON E-COMMERCE PLATFORMS IN THAILAND
Keywords:
Performance Expectancy, Effort Expectancy, Social Influence, Attitude Toward Using, Perceived Enjoyment, Innovativeness, Behavioral IntentionAbstract
This research aims to investigate the determinants of behavioral intention to use augmented reality (AR) for apparel products shopping on e-commerce platforms in Thailand. Key variables are performance expectancy, effort expectancy, social influence, attitude toward using, perceived enjoyment, innovativeness and behavioral intention. The data (n=450) were collected, applying nonprobability sampling technique; judgmental, quota and convenience sampling. The data were analyzed, using descriptive statistics, confirmatory factor analysis (CFA) and structural equation modeling (SEM) methodology. The result showed that performance expectancy, effort expectancy, perceived enjoyment and innovativeness had significant effects on behavioral intention. Also, innovativeness significantly affected perceived enjoyment. On the other hand, social influence and attitude toward using had no significant effect on behavioral intention. Academic researchers, business leaders and marketers are recommended to improve user interface and user experience of AR technology to raise higher adoption rate among consumers.
References
Alwahaishi, S., & Snasel, V. (2013). Modeling the Determinants Affecting Consumers’ Acceptance and Use of Information and Communications Technology. International Journal of E-Adoption, 5(2), 25-39. https://doi.org/10.4018/jea.2013040103
Adeyinka, T. (2014). Predicting Users’ Continuance Intention Toward E-payment System: An Extension of the Technology Acceptance Model. International Journal of Information Systems and Social Change, 5(1), 47-67.
Baabdullah, M. A. (2018). Consumer adoption of Mobile Social Network Games (M-SNGs) in Saudi Arabia: The role of social influence, hedonic motivation and trust. Technology in Society, 53, 91–102.
Balog, A., & Pribeanu, C. (2010). The role of perceived enjoyment in the student’s acceptance of an augmented reality teaching platform: A structural equation modelling approach. Studies in Informatics and Control, 19(3), 319–330.
Baptista, G., & Oliveira, T. (2017). Why so serious? Gamification impact in the acceptance of mobile banking services. Internet Research 27(1), 118–139.
Baynal, K., & Boyaci, A. (2016). E-Commerce Research and Applications a proposal for classification and an update literature review. International Referred Journal of Marketing and Market Researches, 23-23. https://doi.org/10.17369/UHPAD.2016923644
Bhatiasevi, V. (2016). An extended UTAUT model to explain the adoption of mobile banking. Information Development, 32(4), 799–814.
Calisir, F., Altin, C., Bayraktaroglu, A., & Karaali, D. (2014). Predicting the Intention to Use a Web-Based Learning System: Perceived Content Quality, Anxiety, Perceived System Quality, Image, and the Technology Acceptance Model. Human Factors and Ergonomics in Manufacturing & Service Industries, 24(5). https://doi.org/10.1002/hfm.20548
Castelvecchi, D. (2016). Low-cost headsets boost virtual reality’s lab appeal. Nature, 533, 153–154. https://doi.org/10.1038/533153a
Chaouali, W., Yahia, B. I., & Souiden, N. (2016). The interplay of counter-conformity motivation, social influence, and trust in customers’ intention to adopt Internet banking services: The case of an emerging country. Journal of Retailing and Consumer Services, 28, 209–218.
Chen, A., Lu, Y., & Wang, B. (2016). Enhancing perceived enjoyment in social games through social and gaming factors. Information Technology & People, 29(1), 99–119.
Cho, V., & Cheung, I. (2003). A study of on-line legal service adoption in Hong Kong.
Compeau, D., & Higgins, C. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189–211.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340.
Escobar-Rodriguez, T., & Carvajal-Trujillo, E. (2014). Online purchasing tickets for low-cost carriers: An application of the unified theory of acceptance and use of technology (UTAUT) model. Tourism Management, 43, 70–88.
Ghazali, E., Mutum, D. S., & Woon, M.-Y. (2019). Exploring player behavior and motivations to continue playing Pokémon Go. Information Technology & People, 32(3), 646–667. https://doi.org/10.1108/ITP-07-2017-0216
Giovanis, A., Assimakopoulos, C., & Sarmaniotis, C. (2018). Adoption of mobile self-service retail banking technologies: The role of technology, social, channel and personal factors. International Journal of Retail & Distribution Management, 47(9), 894–914.
Gutiérrez, S. M. H., & Herrero-Crespo, Á. (2012). Influence of the user’s psychological factors on the online purchase intention in rural tourism: Integrating innovativeness to the UTAUT framework. Tourism Management, 33(2). https://doi.org/10.1016/j.tourman.2011.04.003
Hair, J., Black, W., Babin, B., Anderson, R., & Tatham, R. (2006). Multivariate Data Analysis (6th ed.). Harlow, England: Pearson Education.
Haugstvedt, A. C., & Krogstie, J. (2012, 5-8 November). Mobile Augmented Reality for Cultural Heritage: A Technology Acceptance Study [Paper presentation]. IEEE International Symposium on Mixed and Augmented Reality 2012 Science and Technology Proceedings, Atlanta.
Heilig, M. (1962). Sensorama simulator. U.S. Patent No - 3, 870. United States Patent and Trade Office.
J.P. Morgan. (2019). E-commerce Payments Trends: Thailand. Thailand e-commerce insights. https://www.jpmorgan.com/europe/merchant-services/insights/reports/thailand
Kijsanayotin, B., Pannarunothai, S., & Speedie, S. M. (2009). Factors influencing health information technology adoption in Thailand’s community health centers: Applying the UTAUT model. International Journal of Medical Informatics, 78(6), 404–416.
Kim, J., & Forsythe, S. (2008). Adoption of virtual try-on technology for online apparel shopping. Journal of Interactive Marketing, 22(2), 45–59.
Kim, J., & Park, H. A. (2012). Development of a health information technology acceptance model using consumers’ health behavior intention. Journal of Medical Internet Research, 14(5), 133.
Liaw, S. & Huang, H. (2011). A study of investigating learners attitudes toward e-learning [Paper presentation] 5th International Conference on Distance Learning and Education, IACSIT Press, Singapore.
Mailizar, M., & Johar, R. (2021). Examining Students’ Intention to Use Augmented Reality in a Project-Based Geometry Learning Environment. International Journal of Instruction, 14(2), 773-790. https://doi.org/10.29333/iji.2021.14243a
Mathwick, C., Malhotra, N., & Rigdon, E. (2001). Experiential value: Conceptualization, measurement and application in the catalog and internet shopping environment. Journal of Retailing, 77(1), 39–56. https://doi.org/10.1016/S0022-4359(00)00045-2
Mueller-Johnson, K., Toglia, M. P., Sweeney, C. D., & Ceci, S. J. (2007). The perceived credibility of older adults as witnesses and its relation to ageism. Behavioral Sciences & the Law, 25(3), 355–375.
Ntsafack, F. W., Kamdjoug, J. R. K., & Wamba, S. F. (2018). Exploring Factors Affecting Mobile Services Adoption by Young Consumers in Cameroon. In Á. Rocha, H. Adeli, L.P. Reis, S. Costanzo (Eds.), Trends and Advances in Information Systems
and Technologies (pp. 46–57). Springer.
Olsson, T., Lagerstam, E., Karkkainen, T., & Vaananen-Vainio-Mattila, K. (2013). Expected user experience of mobile augmented reality services: A user study in the context of shopping centers. Personal and Ubiquitous Computing, 17(2), 287–304.
Pedroso, R., Zanetello, L., Guimaraes, L., Pettenon, M., Goncalves, V., Scherer, J., Kessler F., & Pechansky, F. (2016). Confirmatory factor analysis (CFA) of the crack use relapse scale (CURS). Archives of Clinical Psychiatry, 43(3), 37-40.
Saidin, N., Abd halim, N., & Yahaya, N. (2015). A Review of Research on Augmented Reality in Education: Advantages and Applications. International Education Studies, 8(13), 1-8. https://doi.org/10.5539/ies.v8n13p1
Sica, C. & Ghisi, M. (2007). The Italian versions of the Beck Anxiety Inventory and the Beck Depression Inventory-II: Psychometric properties and discriminant power. In M.A. Lange (Ed.), Leading - Edge Psychological Tests and Testing Research (pp. 27-50). New York: Nova.
Singhal, S., Bagga, S., Goyal, P., & Saxena, V. (2012). Augmented Chemistry: Interactive Education System. International Journal of Computer Applications, 49(15), 1-5. http://dx.doi.org/10.5120/7700-1041
Saprikis, V., Avlogiaris, G., & Katarachia, A. (2021). Determinants of the Intention to Adopt Mobile Augmented Reality Apps in shopping malls among University Students. Journal of Theoretical and Applied Electronic Commerce Research, 16(3), 491–512. https://doi.org/10.3390/jtaer16030030
Shaikh, A. A., Glavee-Geo, R., & Karjaluoto, H. (2018). How relevant are risk perceptions, effort, and performance expectancy in mobile banking adoption? International Journal of e-Business Research, 14(2), 39–60.
Soper, D. S. (2021). A-priori Sample Size Calculator for Structural Equation Models [Software]. www.danielsoper.com/statcalc/default.aspx
Tan, E., & Leby Lau, J. (2016). Behavioural intention to adopt mobile banking among the millennial generation. Young Consumers Insight and Ideas for Responsible Marketers. 17(1), 18–31.
Tariq, B. (2007). Exploring factors influencing the adoption of mobile commerce. Journal of Internet Banking and Commerce, 12(3), 32–42.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2),186–204.
Venkatesh, V., Morris, M. G., Hall, M., Davis, G. B., Davis, F. D., & Walton, S. M. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly. 27(3), 425–478.
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157–178.
Wu, J. H., & Wang, Y. M. (2006). Measuring KMS success: A respecification of the DeLone and McLean’s model. Information and Management, 43(6), 728–739. https://doi.org/10.1016/j.im.2006.05.002
Yu, C. S. (2012). Factors affecting individuals to adopt mobile banking: Empirical evidence from the UTAUT model. Journal of Electronic Commerce, 13(2), 104–121.
Zain, M., Rose, R., Abdullah, I., & Masrom, M. (2005). The relationship between information technology acceptance and organizational agility in Malaysia. Information & Management, 42(6), 41-51. https://doi.org/10.1016/j.im.2004.09.001
Zarmpou, T., Saprikis, V., Markos, A., & Vlachopoulou, M. (2012). Modeling users’ acceptance of mobile services. Electronic Commerce Research, 12(2), 225–248.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Suvarnabhumi Institute of Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของวารสารวิชาการ สถาบันเทคโนโลยีแห่งสุวรรณภูมิ
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับสถาบันเทคโนโลยีแห่งสุวรรณภูมิ และคณาจารย์ท่านอื่นๆในสถาบันฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว