THE PERCEPTION OF COLLEGE STUDENTS TOWARDS BEHAVIORAL INTENTION TO USE CHAOXI ONLINE LEARNING PLATFORM IN CHENGDU, CHINA

Authors

  • Xiaoli Liu Chengdu Vocational & Technical College of Industry, China.

Keywords:

Self-Efficacy, Attitude, Subjective Norms, Behavioral Intention, Use Behavior

Abstract

The use of online learning in higher education after the decline of COVID-19 has been debated. This quantitative study investigates factors impacting students’ behavioral intention to use Chaoxi online learning platform in Chengdu, China. The questionnaire was distributed to 500 third-year students from three selected colleges in Chengdu. The sampling methods are judgmental, stratified random, and convenience sampling. The study was measured with the index of item-objective congruence (IOC) and pilot test (n=50) to ensure content validity and construct reliability. Confirmatory Factor Analysis (CFA) and Structural Equation Model (SEM) were the main statistical tools. The results showed that perceived ease of use significantly impacts perceived usefulness. Perceived usefulness and subjective norms significantly impact attitude. Subjective norms, self-efficacy, and attitude significantly impact behavioral intention towards use behavior. Nevertheless, perceived ease of use and self-efficacy directly impact attitude but not significant.

References

Aboelmaged, M. (2010). Predicting e-procurement adoption in a developing country: An empirical integration of technology acceptance model and theory of planned behaviour. Industrial Management and Data Systems, 110(3), 392-414. https://doi.org/10.1108/02635571011030042

Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.

Ajzen, I., & Fishbein, M. (1980). Understanding Attitudes and Predicting Social Behavior. Prentice-Hall.

Al-Mamary, Y. H., & Shamsuddin, A. (2015). Testing of The Technology Acceptance Model in Context of Yemen. Mediterranean Journal of Social Sciences, 6(4). 268-273.

Awang, Z. (2012). A Handbook on SEM Structural Equation Modelling: SEM Using AMOS Graphic (5th ed.). Universiti Teknologi Mara Kelantan.

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246. https://doi.org/10.1037/0033-2909.107.2.238

Bong, M., & Skaalvik, E. M. (2003). Academic self-concept and self-effificacy: how different are they really?. Educational Psychology Review, 15(1), 1-14. http://dx.doi.org/10.1023/A:1021302408382

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology, MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008

de Haan, E., Kannan, P. K., Verhoef, P., & Wiesel, T. (2018). Device Switching in Online Purchasing: Examining the Strategic Contingencies. Journal of Marketing, 82(5), https://doi.org/10.1509/jm.17.0113

Deng, S., Liu, Y., & Qi, Y. (2011). An empirical study on determinants of web-based question-answer services adoption. Online Information Review, 35(5), 789-798. http://dx.doi.org/10.1108/14684521111176507

Fornell, C., & Larcker, D. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312

Grewal, D., Ahlbom, C. P., Beitelspacher, L., Noble, S. M., & Nordfält, J. (2018). In-store mobile phone use and customer shopping behavior: evidence from the field. Journal of Marketing, 82(4), 102-126. http://dx.doi.org/10.1509/jm.17.0277

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis (7th ed.). Pearson.

Hsu, C., Yu, C., & Wu, C. (2014). Exploring the continuance intention of social networking websites: an empirical research. Information Systems and e-Business Management, 12(2), 139-163. http://dx.doi.org/10.1007/s10257-013-0214-3

Hu, J., & Zhang, Y. (2016). Chinese students’ behavior intention to use mobile library apps and effects of education level and discipline. Library Hi Tech, 34(4), 639-656. http://dx.doi.org/10.1108/LHT-06-2016-0061

Jarvenpaa, S. L., & Staples, D. S. (2001). Exploring Perceptions of Organizational Ownership of Information and Expertise. Journal of Management Information Systems, 18, 151-183.

Jugert, P., Greenaway, K. H., Barth, M., Büchner, R., Eisentraut, S., & Fritsche, I. (2016). Collective efficacy increases pro-environmental intentions through increasing self-efficacy. Journal of Environmental Psychology, 48, 12-23. http://dx.doi.org/10.1016/j.jenvp.2016.08.003

Keong, M. L., Thurasamy, R., Sherah, K., & Chiun, L. M. (2012). Explaining intention to use an enterprise resource planning (ERP) system: an extension of the UTAUT model. Business Strategy Series, 13(4), 108-120. https://doi.org/10.1108/17515631211246249

Lai, V. S., & Li, H. (2005). Technology acceptance model for internet banking: an invariance analysis. Information & Management, 42(2), 373-386.

McKechnie, S., Winklhofer, H., & Ennew, C. (2006). Applying the technology acceptance model to the online retailing of financial services. International Journal of Retail & Distribution Management, 34(4/5), 388-410. https://doi.org/10.1108/09590550610660297

Nolasco, C. E. (2022, February 1). Online Distance Learning: The New Normal In Education. https://elearningindustry.com/online-distance-learning-the-new-normal-in-education

Park, E. (2013). The adoption of tele-presence systems: Factors affecting intention to use telepresence systems. Kybernetes, 42(6), 869-887. http://dx.doi.org/10.1108/K-01-2013-0013

Pedroso, R., Zanetello, L., Guimaraes, L., Pettenon, M., Goncalves, V., Scherer, J., Kessler, F., & Pechansky, F. (2016). Confirmatory factor analysis (CFA) of the crack use relapse scale (CURS). Archives of Clinical Psychiatry, 43(3), 37-40.

Salkind, N. J. (2010). Content Validity. In N. J. Salkind (Ed.), Encyclopedia of Research Design (pp. 501-503). SAGE Publications. https://doi.org/10.4135/9781412961288.n74

Samsudeen, S. N., & Mohamed, R. (2019). University students’ intention to use e-learning systems A study of higher educational institutions in Sri Lanka. Interactive Technology and Smart Education, 16(3), 219-238. http://dx.doi.org/10.1108/ITSE-11-2018-0092

Sarmento, R., & Costa, V. (2019). Confirmatory Factor Analysis -- A Case study. Cornell University.

Sharma, S., Mukherjee, S., Kumar, A., & Dillon, W. (2005). A simulation study to investigate the use of cutoff values for assessing model fit in covariance structure models. Journal of Business Research, 58(7), 935-943. https://doi.org/10.1016/j.jbusres.2003.10.007

Shasha, Y., & Leelakasemsant, C. (2022). Influencing Factors of Entrepreneurial Intention among Engineering Students in Sichuan, China. AU-GSB E-JOURNAL, 15(2), 25-36. https://doi.org/10.14456/augsbejr.2022.69

Sica, C., & Ghisi, M. (2007). The Italian versions of the Beck Anxiety Inventory and the Beck Depression Inventory-II: Psychometric properties and discriminant power. In M. A. Lange (Ed.), Leading-edge psychological tests and testing research (pp. 27–50). Nova Science Publishers.

Soper, D. S. (2022, May 24). A-priori Sample Size Calculator for Structural Equation Models https://www.danielsoper.com/

Tai, S. H. C. (2008). Relationship between the personal values and shopping orientation of Chinese consumers. Asia Pacific Journal of Marketing and Logistics, 20(4), 381-395. http://dx.doi.org/10.1108/13555850810909713

Troudi, H., & Bouyoucef, D. (2020). Predicting purchasing behavior of green food in Algerian context. EuroMed Journal of Business, 15(1), 1-21. https://doi.org/10.1108/EMJB-03-2019-0046

Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186- 204. https://doi.org/10.1287/mnsc.46.2.186.11926.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: toward a unified view. MIS Quarterly, 27(3), 425-478. http://dx.doi.org/10.2307/30036540

Venkatesh, V., Thong, J., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412

Watjatrakul, B. (2016). Online learning adoption: effects of neuroticism, openness to experience, and perceived values. Interactive Technology and Smart Education, 13(3), 229-243. https://doi.org/10.1108/ITSE-06-2016-0017

Wu, J. H., & Wang, Y. M. (2006). Measuring KMS Success: A Respecification of the DeLone and McLean’s Model. Journal of Information & Management, 43(6), 728-739. http://dx.doi.org/10.1016/j.im.2006.05.002

Xia, H. (2020, April 28). China's online education users soar to 423 mln: report. http://www.xinhuanet.com/english/2020-04/28/c_139014944.htm

Yi, M., Jackson, J., Park, J., & Probst, J. (2006). Understanding information technology acceptance by individual professionals: toward an integrative view. Information and Management, 43(3), 350-363. http://dx.doi.org/10.1016/j.im.2005.08.006

Zhou, L., Dai, L., & Zhang, D. (2007). Online shopping acceptance model-a critical survey of consumer factors in online shopping. Journal of Electronic Commerce Research, 8(1), 41-62.

Downloads

Published

2023-12-28

Issue

Section

Research Articles