FACTORS IMPACTING JUNIOR COLLEGE STUDENTS’ ATTITUDE AND PURCHASE INTENTION OF ONLINE SHOPPING IN NANNING, CHINA
Keywords:
Online Shopping, Junior College Student, Purchase Intention, ChinaAbstract
This research explores factors influencing junior college students' attitudes and purchase intentions toward online shopping in Nanning, China, using the Technology Acceptance Model, Theory of Reasoned Action, and Theory of Planned Behavior. A quantitative approach was applied with a questionnaire, tested for reliability through Item-objective congruence and Cronbach’s Alpha, and distributed online to 500 students. Data was analyzed using Confirmatory Factor Analysis and Structural Equation Modeling to test hypotheses. The results indicated that perceived risk and attitude are the key factors influencing purchase intention in online shopping. Perceived risk strongly influenced purchase intention, followed by attitude. Perceived enjoyment, usefulness, ease of use, and trust also impacted ATT. Online platforms should focus on improving security, product quality, and service to boost online shopping frequency and purchase intention among junior college students.
References
Ajzen, I. (2002). Perceived behavioral control, self-efficacy, locus of control, and the theory of planned behavior. Journal of Applied Social Psychology, 32(4), 665–683. Retrieve from https://doi.org/10.1111/j.1559-1816.2002.tb00236.x
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior (1st ed.). Prentice-Hall.
Al-Abrrow, H., Ali, J., & Alnoor, A. (2019). Multilevel Influence of Routine Redesigning, Legitimacy and Functional Affordance on Sustainability Accounting: Mediating Role of Organizational Sense-making. Global Business Review, Retrieve from https://doi.org/10.1177/0972150919869726
Al-Mamary, Y. H., & Shamsuddin, A. (2015). Testing of the technology acceptance model in context of Yemen. Mediterranean Journal of Social Sciences, 6(4 Suppl. 1), 268–275. Retrieve from https://doi.org/10.5901/mjss.2015.v6n4s1p268
Apasrawirote, D., & Yawised, K. (2022). Factors Influencing the Behavioral and Purchase Intention on Live-streaming Shopping. Asian Journal of Business Research, 12(1), 39–56. Retrieve from https://doi.org/10.14707/ajbr.220119
Aref, M. M., & Okasha, A. E. (2020). Evaluating the online shopping behavior among Egyptian college-educated community. Review of Economics and Political Science, 5(1), 21-37. Retrieve from https://doi.org/10.1108/REPS-10-2018-0013
Awang, Z. (2012). Research methodology and data analysis (2nd ed.). UiTM Press.
Aydoğdu, V. (2023). The effect of university students' attitudes towards online shopping on shopping experience and repurchase behavior. Revista de Gestão e Secretariado, 14(10), 17025-17036. Retrieve from https://doi.org/10.7769/gesec.v14i10.2916
Bauer, R. A. (1960). Consumer behavior as risk taking. In D. F. Cox (Ed.), Risk taking and information handling in consumer behavior (pp. 389-398). Harvard University Press.
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246. Retrieve from https://doi.org/10.1037/0033-2909.107.2.238
Cambra-Fierro, J., Gao, L. (Xuehui), & Melero-Polo, I. (2021). The power of social influence and customer–firm interactions in predicting non-transactional behaviors, immediate customer profitability, and long-term customer value. Journal of Business Research, 125, 103–119. Retrieve from https://doi.org/10.1016/j.jbusres.2020.12.013
Chen, P.-Y., & Hitt, L. M. (2002). Measuring Switching Costs and the Determinants of Customer Retention in Internet-Enabled Businesses: A Study of the Online Brokerage Industry. Information Systems Research, 13(3), 255–274. Retrieve from https://doi.org/10.1287/isre.13.3.255.78
Chen, Y., & Barnes, S. (2007). Initial trust and online buyer behavior. Industrial Management & Data Systems, 107(1), 21–36. Retrieve from https://doi.org/10.1108/02635570710719034
Chen, Y., Yan, X., Fan, W., & Gordon, M. (2015). The joint moderating role of trust propensity and gender on consumers’ online shopping behavior. Computers in Human Behavior, 43, 272–283. Retrieve from https://doi.org/10.1016/j.chb.2014.10.020
Childers, T. L., Carr, C. L., Peck, J., & Carson, S. (2001). Hedonic and Utilitarian Motivations for Online Retail Shopping Behavior. Journal of Retailing, 77(4), 511–535. Retrieve from https://doi.org/10.1016/s0022-4359(01)00056-2
Chisnall, P. M. (1997). Consumer behaviour (1st ed.). Mcgraw-Hill
Clarke, I., & Flaherty, T. (2005). Advances in Electronic Marketing (1st ed.). IGI Global.
Cox, D. F., & Rich, S. U. (1964). Perceived Risk and Consumer Decision-Making: The Case of Telephone Shopping. Journal of Marketing Research, 1(4), 32. Retrieve from https://doi.org/10.2307/3150375
Davis, F., Francis Gnanasekar, M. B., & Parayitam, S. (2021). Trust and product as moderators in online shopping behavior: evidence from India. South Asian Journal of Marketing, 2(1), 28–50. Retrieve from https://doi.org/10.1108/sajm-02-2021-0017
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. Journal of Risk and Uncertainty, 18(3), 321–325. JSTOR. Retrieve from https://doi.org/10.1023/a:1011156710779
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and Intrinsic Motivation to Use Computers in the Workplace. Journal of Applied Social Psychology, 22(14), 1111–1132. Retrieve from https://doi.org/10.1111/j.1559-1816.1992.tb00945.x
Devellis, R. F. (2017). Scale Development: Theory and Applications (4th ed.). SAGE Publications.
Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39–50. Retrieve from https://doi.org/10.2307/3151312
Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS Quarterly, 27(1), 51–90. Retrieve from https://doi.org/10.2307/30036519
Hair, J., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis: A Global Perspective (7th ed.). Pearson Education, Cop.
Hernández, B., Jiménez, J., & Martín, M. J. (2011). Age, gender, and income: do they really moderate online shopping behaviour? Online Information Review, 35(1), 113–133. Retrieve from https://doi.org/10.1108/14684521111113614
Holmes, A., Byrne, A., & Rowley, J. (2013). Mobile shopping behaviour: insights into attitudes, shopping process involvement and location. International Journal of Retail & Distribution Management, 42(1), 25–39. Retrieve from https://doi.org/10.1108/ijrdm 10-2012-0096
Hossain, A., Hasan Uddin, M., & Islam, I. (2021). Drivers for Online Buying Behaviour in Bangladesh. Abhigyan, 39(1), 22–31. Retrieve from https://doi.org/10.56401/abhigyan/39.1.2021.22-31
Hoyle, R. H. (2011). Structural Equation Modeling for Social and Personality Psychology. SAGE Publications Ltd. Retrieve from https://doi.org/10.4135/9781446287965
Hsu, M.-H., Chuang, L.-W., & Hsu, C.-S. (2014). Understanding online shopping intention: the roles of four types of trust and their antecedents. Internet Research, 24(3), 332–352. Retrieve from https://doi.org/10.1108/intr-01-2013-0007
Huseynov, F., & Yıldırım, S. Ö. (2019). Online Consumer Typologies and Their Shopping Behaviors in B2C E-Commerce Platforms. SAGE Open, 9(2), 215824401985463. Retrieve from https://doi.org/10.1177/2158244019854639
Jarvenpaa, S. L., Tractinsky, N., & Saarinen, L. (1999). Consumer Trust in an Internet Store: A Cross-Cultural Validation. Journal of Computer-Mediated Communication, 5(2). Retrieve from https://doi.org/10.1111/j.1083-6101.1999.tb00337.x
Khan, A., & Khan, S. (2020). Purchasing grocery online in a nonmetro city: Investigating the role of convenience, security, and variety. Journal of Public Affairs. Retrieve from https://doi.org/10.1002/pa.2497
Kurt, D., Pauwels, K., Kurt, A. C., & Srinivasan, S. (2021). The asymmetric effect of warranty payments on firm value: The moderating role of advertising, R&D, and industry concentration. International Journal of Research in Marketing, 38(4), 817-837. Retrieve from https://doi.org/10.1016/j.ijresmar.2021.06.001
Maduku, D. K., & Thusi, P. (2023). Understanding consumers’ mobile shopping continuance intention: New perspectives from South Africa. Journal of Retailing and Consumer Services, 70, 103185. Retrieve from https://doi.org/10.1016/j.jretconser.2022.103185
Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An Integrative Model of Organizational Trust. The Academy of Management Review, 20(3), 709–734. Retrieve from https://doi.org/10.2307/258792
Moriset, B. (2018, April 12). e-Business and e-Commerce. Retrieve from https://shs.hal.science/halshs-01764594
Pedroso, Y. V., Valdivié Navarro, M., Berrios Fleites, I., & Sosa Solis, E. C. (2016). Feeding systems with foliage of Morus alba and sugar cane stalks for fattening rabbits. Revista Electrónica de Veterinaria, 17(12), 1-7.
Pelaez, A., Chen, C.-W., & Chen, Y. X. (2017). Effects of Perceived Risk on Intention to Purchase: A Meta-Analysis. Journal of Computer Information Systems, 59(1), 73–84. Retrieve from https://doi.org/10.1080/08874417.2017.1300514
Peña-García, N., Gil-Saura, I., Rodríguez-Orejuela, A., & Siqueira-Junior, J. R. (2020). Purchase intention and purchase behavior online: A cross-cultural approach. Heliyon, 6(6), 1-10.
Peres-Neto, P. R., Jackson, D. A., & Somers, K. M. (2003). Giving Meaningful Interpretation To Ordination Axes: Assessing Loading Significance In Principal Component Analysis. Ecology, 84(9), 2347–2363. Retrieve from https://doi.org/10.1890/00-0634
Peterson, R. A., & Kim, Y. (2013). On the relationship between coefficient alpha and composite reliability. Journal of Applied Psychology, 98(1), 194–198. Retrieve from https://doi.org/10.1037/a0030767
Santo, P. E., & Marques, A. M. A. (2022). Determinants of the online purchase intention: hedonic motivations, prices, information, and trust. Baltic Journal of Management, a head-of-print (ahead-of-print). Retrieve from https://doi.org/10.1108/bjm-04-2021-0140
Sharma, G. P., Verma, R. C., & Pathare, P. (2005). Mathematical modeling of infrared radiation thin layer drying of onion slices. Journal of Food Engineering, 71(3), 282–286. Retrieve from https://doi.org/10.1016/j.jfoodeng.2005.02.010
Shevlin, M., & Miles, J. N. V. (1998). Effects of sample size, model specification and factor loadings on the GFI in confirmatory factor analysis. Personality and Individual Differences, 25(1), 85–90. Retrieve from https://doi.org/10.1016/s01918869(98)00055-5
Shih, H.-P. (2004). An empirical study on predicting user acceptance of e-shopping on the Web. Information & Management, 41(3), 351–368. Retrieve from https://doi.org/10.1016/s0378-7206(03)00079-x
Sica, C., & Ghisi, M. (2007). The Italian versions of the Beck Anxiety Inventory and the Beck Depression Inventory-II: Psychometric properties and discriminant power. In M. A. Lange (Ed.), Leading-edge psychological tests and testing research (pp. 27-50). Nova Science Publishers.
Soper, D. (2006). Calculator: A-priori Sample Size for Structural Equation Models. Daniel Soper. Retrieve from https://www.danielsoper.com/statcalc/calculator.aspx?id=89
Taher, G. (2021). E-Commerce: Advantages and Limitations. International Journal of Academic Research in Accounting, Finance and Management Sciences, 11(1), 153–165. Retrieve from https://doi.org/10.6007/ijarafms/v11-i1/8987
Tran, V. D., & Nguyen, T. D. (2022). The impact of security, individuality, reputation, and consumer attitudes on purchase intention of online shopping: The evidence in Vietnam. Cogent Psychology, 9(1), 12-30. Retrieve from
https://doi.org/10.1080/23311908.2022.2035530
Ullman, J. B., & Bentler, P. M. (2012). Structural Equation Modeling. Handbook of Psychology, Second Edition, 2(1), 11-23. Retrieve from https://doi.org/10.1002/9781118133880.hop202023
Weston, R., & Gore, P. A. (2006). A Brief Guide to Structural Equation Modeling. The Counseling Psychologist, 34(5), 719–751. Retrieve from https://doi.org/10.1177/0011000006286345
Wong, C. H., Tan, G. W. H., Ooi, K. B., & Lin, B. (2015). Mobile shopping: the next frontier of the shopping industry? An emerging market perspective. International Journal of Mobile Communications, 13(1), 92. Retrieve from https://doi.org/10.1504/ijmc.2015.065892
Wu, J., & Wang, Y. (2006). What drives mobile commerce? An empirical evaluation of the revised technology acceptance model. Information & Management, 43(5), 537-550. Retrieve from https://doi.org/10.1016/j.im.2006.03.003
Zhou, L., Dai, L., & Zhang, D. (2007). Online Shopping Acceptance Model -A Critical Survey Of Consumer Factors In Online Shopping. Journal of Electronic Commerce Research, 8(1), 1-10.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Suvarnabhumi Institute of Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของวารสารวิชาการ สถาบันเทคโนโลยีแห่งสุวรรณภูมิ
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับสถาบันเทคโนโลยีแห่งสุวรรณภูมิ และคณาจารย์ท่านอื่นๆในสถาบันฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว

