FACTORS IMPACTING UNDERGRADUATE ATTITUDE AND BEHAVIORAL INTENTION TO USE ONLINE FOOD DELIVERY IN CHENGDU, CHINA
Keywords:
Online Food Delivery, Perceived Ease of Use, Attitudes, Perceived Usefulness, TrustAbstract
This study explores the factors influencing undergraduate students' behavioral intention to use online food delivery services at three public universities in Chengdu, China. Key factors such as perceived ease of use, attitude, usefulness, trust, performance expectancy, social influence, effort expectancy, and behavioral intention were examined. A sample of 500 students was surveyed using a multistage sampling strategy, and the data was analyzed using Confirmatory Factor Analysis and Structural Equation Modeling. The results showed that social influence strongly impacted students' behavioral intentions. The study suggests that online food delivery service providers improve service quality and app design to enhance the user experience. Additionally, university administrators should use these findings to improve off-campus restaurants, platforms, and on-campus dining services, promoting healthier eating habits among students.
References
Agarwal, R., & Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies? Decision Sciences, 30(2), 361–391. Retrieve from https://doi.org/10.1111/j.1540-5915.1999.tb01614.x
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179-211.Retrieve from https://doi.org/10.1016/0749-5978(91)90020-T
Ajzen, I. (2002). Perceived behavioral control, self-efficacy, locus of control, and the theory of planned behavior. Journal of Applied Social Psychology, 32(4), 665–683. Retrieve from https://doi.org/10.1111/j.1559-1816.2002.tb00236.x
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior (1st ed.). Prentice-Hall.
Alagoz, S. M., & Hekimoğlu, H. (2012). A study on TAM: Analysis of customer attitudes in online food ordering system. Procedia - Social and Behavioral Sciences, 62, 1138–1143. Retrieve from https://doi.org/10.1016/j.sbspro.2012.09.193
Al-Mamary, Y. H., & Shamsuddin, A. (2015). Testing of the technology acceptance model in context of Yemen. Mediterranean Journal of Social Sciences, 6(4 Suppl. 1), 268–275. https://doi.org/10.5901/mjss.2015.v6n4s1p268
Awang, Z. (2012). Research methodology and data analysis (2nd ed.). UiTM Press.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94. Retrieve from https://doi.org/10.1007/BF02723327
Bajaj, A., & Nidumolu, S. R. (1998). A feedback model to understand information system usage. Information & Management, 33(4), 213–224. Retrieve from https://doi.org/10.1016/S0378-7206(98)00026-3
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246. Retrieve from https://doi.org/10.1037/0033-2909.107.2.238
Bouranta, N., Chitiris, L., & Paravantis, J. (2009). The relationship between internal and external service quality. International Journal of Contemporary Hospitality Management, 21(3), 275–293.Retrieve from https://doi.org/10.1108/0959611091094829
Bugembe, J. (2010). Perceived usefulness, perceived ease of use, attitude, and actual usage of a new financial management system: A case study of Uganda National Examination Board (Doctoral dissertation). Makerere University, Uganda. Retrieved from http://www.makir.mak.ac.u
Chiu, C. M., & Wang, E. T. (2008). Understanding web-based learning continuance intention: The role of subjective task value. Information & Management, 45(3), 194–201. Retrieved from https://doi.org/10.1016/j.im.2008.02.001
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. Retrieved from https://doi.org/10.2307/249008
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003. Retrieved from https://doi.org/10.1287/mnsc.35.8.982
De Freitas, R. S. G., & Stedefeldt, E. (2020). COVID-19 pandemic underlines the need to build resilience in commercial restaurants’ food safety. Food Research International, 136, 109472. Retrieved from https://doi.org/10.1016/j.foodres.2020.109472
Dikko, M. (2016). Establishing construct validity and reliability of research instruments: A review of basic concepts and applications. International Journal of Economics, Commerce and Management, 4(1), 51-60.
Eccles, J. S., & Wigfeld, A. (1995). In the mind of the actor: The structure of adolescents’ achievement task values and expectancy-related beliefs. Personality and Social Psychology Bulletin, 21(3), 215–225.
El-Gayar, O. F., Moran, M., & Hawkes, M. (2011). Students’ acceptance of tablet PCs and implications for educational institutions. Educational Technology & Society, 14(2), 58–70.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. Retrieved from https://doi.org/10.2307/315131
Gefen, D. (2000). E-commerce: The role of familiarity and trust. Omega, 28(6), 725–737. Retrieved from https://doi.org/10.1016/S0305-0483(00)00021-9
Ghalandari, K. (2012). The effect of performance expectancy, effort expectancy, social influence, and facilitating conditions on acceptance of e-banking services in Iran: The moderating role of age and gender. Middle East Journal of Scientific Research, 12(6), 801–807.
Grabner-Kraeuter, S. (2002). The role of consumers’ trust in online shopping. Journal of Business Ethics, 39(1), 43–50. Retrieved from https://doi.org/10.1023/A:101632381580
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Prentice-Hall.
Hong, C., Choi, H., Choi, E.-K., & Joung, H.-W. (2021). Factors affecting customer intention to use online food delivery services before and during the COVID-19 pandemic. Journal of Hospitality and Tourism Management, 48, 509–518.
Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strategic Management Journal, 20(2), 195-204.
Kang, J.-W., & Namkung, Y. (2019). The information quality and source credibility matter in customers' evaluation toward food O2O commerce. International Journal of Hospitality Management, 78, 189-198. Retrieved from https://doi.org/10.1016/j.ijhm.2018.10.011
Kelman, H. (1958). Compliance, identification, and internalization: Three processes of attitude change. Journal of Conflict Resolution, 2(1), 51–60. Retrieved from https://doi.org/10.1177/00220027580020010
Khayati, S., & Zouaoui, S. K. (2013). Perceived usefulness and use of information technology: The moderating influences of the dependence of a subcontractor towards his contractor. Journal of Knowledge Management, Economics, and Information Technology, 3(6), 68-7.
Kotler, P., & Armstrong, G. (2018). Principles of marketing (18th ed.). Pearson Education Limited.
Kumar, S., & Shah, A. (2021). Revisiting food delivery apps during the COVID-19 pandemic: Investigating the role of emotions. Journal of Retailing and Consumer Services, 62, 102595. Retrieved from https://doi.org/10.1016/j.jretconser.2021.102595
Li, A. Q. (2020). Research on the development of college students' mobile learning power (1st ed.). Dalian University of Technology Press.
Li, C., Mirosa, M., & Bremer, P. (2020). Review of online food delivery platforms and their impacts on sustainability. Sustainability, 12, 5528. Retrieved from https://doi.org/10.3390/su1214552
Liang, D., Dai, Z., & Wang, M. (2021). Assessing customer satisfaction of O2O takeaway based on online reviews by integrating fuzzy comprehensive evaluation with AHP and probabilistic linguistic term sets. Applied Soft Computing, 98, 106847. Retrieved from https://doi.org/10.1016/j.asoc.2020.106847
Liébana-Cabanillas, F., Sánchez-Fernández, J., & Muñoz-Leiva, F. (2014). The moderating effect of experience in the adoption of mobile payment tools in virtual social networks: The m-payment acceptance model in virtual social networks (MPAM-VSN). International Journal of Information Management, 34(2), 151–166. Retrieved from https://doi.org/10.1016/j.ijinfomgt.2013.12.006
Liu, S. (2012). The impact of forced use on customer adoption of self-service technologies. Computers in Human Behavior, 28(4), 1194-1201. Retrieved from https://doi.org/10.1016/j.chb.2012.02.002
Marinković, V., Đorđević, A., & Kalinić, Z. (2020). The moderating effects of gender on customer satisfaction and continuance intention in mobile commerce: A UTAUT-based perspective. Technology Analysis and Strategic Management, 32(3), 306–318. Retrieved from https://doi.org/10.1080/09537325.2019.1655537
Meemken, E.-M., Bellemare, M. F., Reardon, T., & Vargas, C. M. (2022). Research and policy for the food-delivery revolution. Science, 377(6608), 810–813. Retrieved from https://doi.org/10.1126/science.abo2182
Muangmee, C., Kot, S., Meekaewkunchorn, N., Kassakorn, N., & Khalid, B. (2021). Factors determining the behavioral intention of using food delivery apps during COVID-19 pandemics. Journal of Theoretical and Applied Electronic Commerce Research, 16, 1297–1310. Retrieved from https://doi.org/10.3390/jtaer1605007
Pedroso, Y. V., Valdivié Navarro, M., Berrios Fleites, I., & Sosa Solis, E. C. (2016). Feeding systems with foliage of Morus alba and sugar cane stalks for fattening rabbits. Revista Electrónica de Veterinaria, 17(12), 1-7.
Puriwat, W., & Tripopsakul, S. (2021). Understanding food delivery mobile application technology adoption: A UTAUT model integrating perceived fear of COVID-19. Emerging Science Journal, 5(6), 1061–1072. Retrieved from https://doi.org/10.28991/esj-2021-01324
Radu, L.-D., & Popescul, D. (2022). The role of data platforms in the COVID-19 crisis: A smart city perspective. Aslib Journal of Information Management, ahead-of-print. Retrieved from https://doi.org/10.1108/AJIM-01-2022-0032
Rattanaburi, S., Sawaswong, V., Chitcharoen, S., Sivapornnukul, P., Nimsamer, P., Suntronwong, N., Puenpa, J., Poovorawan, Y., & Payungporn, S. (2022). Bacterial microbiota in the upper respiratory tract of COVID-19 and influenza patients. Experimental Biology and Medicine (Maywood), 247(5), 409–415. Retrieved from https://doi.org/10.1177/15353702211057473
Ray, A., Dhir, A., Bala, P. K., & Kaur, P. (2019). Why do people use food delivery apps (FDA)? A uses and gratification theory perspective. Journal of Retailing and Consumer Services, 51, 221–230. Retrieved from
https://doi.org/10.1016/j.jretconser.2019.05.025
Rini, A. S., Giantari, I. G. A. K., & Sukaatmadja, I. P. G. (2017). Pengaruh pengetahuan lingkungan dan kepedulian lingkungan terhadap sikap dan niat beli produk hijau “THE BODY SHOP” di Kota Denpasar. E-Jurnal Ekonomi dan Bisnis Universitas Udayana, 6(1), 137–166.
Sair, S. A., & Danish, R. Q. (2018). Effect of performance expectancy and effort expectancy on the mobile commerce adoption intention through personal innovativeness among Pakistani consumers. Pakistan Journal of Commerce and Social Sciences, 12, 501–520.
Sharma, G. P., Verma, R. C., & Pathare, P. (2005). Mathematical modeling of infrared radiation thin layer drying of onion slices. Journal of Food Engineering, 71(3), 282–286. Retrieved from https://doi.org/10.1016/j.jfoodeng.2005.02.010
Sica, C., & Ghisi, M. (2007). The Italian versions of the Beck Anxiety Inventory and the Beck Depression Inventory-II: Psychometric properties and discriminant power. In M. A. Lange (Ed.), Leading-edge psychological tests and testing research (pp. 27-50). Nova Science Publishers.
Tossy, T. (2014). Modelling the adoption of mobile payment system for paying examination fees in Tanzanian major cities. International Journal of Computing and ICT Research, 8(2), 83-98. Retrieved from http://www.ijcir.mak.ac.ug/volume8-issue2/article7.pdf
Tsai, T.-M., Wang, W.-N., Lin, Y.-T., & Choub, S.-C. (2015). An O2O commerce service framework and its effectiveness analysis with application to proximity commerce. Procedia Manufacturing, 3, 3498–3505. Retrieved from
https://doi.org/10.1016/j.promfg.2015.07.668
Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273–315. Retrieved from https://doi.org/10.1111/j.1540-5915.2008.00192.x
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204. Retrieved from https://doi.org/10.1287/mnsc.46.2.186.11926
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. B. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 23(3), 425–478. Retrieved from https://doi.org/10.2307/3003654
Vijayasarathy, L. R. (2004). Predicting consumer intentions to use online shopping: The case for an augmented technology acceptance model. Information & Management, 41(6), 747–762. Retrieved from https://doi.org/10.1016/j.im.2003.08.01
Wigfield, A., & Cambria, J. (2010). Expectancy-value theory: Retrospective and prospective. Advances in Motivation and Achievement, 16(Part A), 35–70. Retrieved from https://doi.org/10.1108/S0749-7423(2010)000016A005
Wu, J., & Wang, Y. (2006). What drives mobile commerce? An empirical evaluation of the revised technology acceptance model. Information & Management, 43(5), 537-550. Retrieved from https://doi.org/10.1016/j.im.2006.03.003
Wu, M., Yu, P., & Weng, Y. (2012). A study on user behavior for I Pass by UTAUT: Using Taiwan’s MRT as an example. Asia Pacific Management Review, 17(1), 91–111. Retrieved from http://www.apmr.management.ncku.edu.tw
Yusra, A., Hadya, R., & Begawati, N. (2019). Retained earnings and their impact on dividend policy decisions in Indonesian companies. International Journal of Economics and Financial Studies, 6(1), 28-36. Retrieved from https://doi.org/10.1007/jefs-2019-23
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Suvarnabhumi Institute of Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของวารสารวิชาการ สถาบันเทคโนโลยีแห่งสุวรรณภูมิ
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับสถาบันเทคโนโลยีแห่งสุวรรณภูมิ และคณาจารย์ท่านอื่นๆในสถาบันฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว

