Density functional study of metal Lewis acid complexes Pt(PB) and Pt(PAl) for H2 activation and ethylene hydrogenation
Main Article Content
Abstract
The transition metal group 10 (M = Pt, Ni) can work cooperatively with the Lewis acid (Z = B, Al) towards heterolytic H2 activation. Our density functional study showed that 2Pt(PAl), the Mes2PC(=CHPh)AltBu2 (PAl) ligand in combination with platinum metal, enables cooperative dihydrogen activation via T-shaped transition state TS25_PtAl (31.6 kcal/mol), which is in accordance with the experimentally observed hydrogen activation at 80 oC. We then explored the possibility of using boron instead of aluminum Lewis acid. Unlike 2Pt(PAl), 2Pt(PB) has no interaction between Pt—B (3.154 Å). This allows more facile activation of dihydrogen substrate, which leads to a lower energy barrier of 21.8 kcal/mol for 2Pt(PB). With the use of electropositive Ni in place of Pt, 2Ni(PB) exhibited even higher reactivity towards H2 with energy barrier of 9.7 kcal/mol. While the Pt complexes proceeded with the T-shape geometries in the formation of TS25_PtB, nickel complex bears the tetrahedral-like transition state, TS25_NiB. The distortion-interaction analysis was performed to evaluate the contribution that affects the height of energy barrier. Furthermore, the H2 activation product was used to perform ethylene hydrogenation. The rate determining step was achieved through the first transfer of terminal hydrogen from 5M(PZ) to the carbon of ethylene via transition state TS78_MZ. The energy required to proceed ethylene hydrogenation by Ni(PB) was found to be most favorable among all metal complexes (26.3 kcal/mol). The energetic profile from this computational study can be used as a guide for potential reactivity of metal Lewis acid complexes.
Article Details
The Journal of Science and Science Education (JSSE) retain the right of all articles published in JSSE. The coresponding author or the authorized person on behalf of the authors must send the complete Copyright Transfer Form to JSSE before any article get published in JSSE.
Copyright Transfer Form
The JSSE request the coresponding author or the authorized person on behalf of the authors upload the manuscript under the together with the Copyright Transfer Form under the supplementary data. The guidline for uploading both manuscript and Copyright Transfer Form is shown below:
1. Upload the manuscript in the sub-menu, Article Component > Article Text.
2. Upload the the Copyright Transfer Form in the sub-menu, Article Component > Other.
Download Copyright Transfer Form
References
Appelt, C., Westenberg, H., Bertini, F., Ehlers, A. W., Slootweg, J. C., Lammertsma, K., & Uhl, W. (2011). Geminal Phosphorus/Aluminum-Based Frustrated Lewis Pairs: C-H versus C-C Activation and CO2 Fixation. Angewandte Chemie International Edition, 50(17), 3925-3928. doi:10.1002/anie.201006901
Bergner, A., Dolg, M., Küchle, W., Stoll, H., & Preuß, H. (1993). Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Molecular Physics, 80(6), 1431-1441. doi:10.1080/00268979300103121
Chai, J.-D., & Head-Gordon, M. (2008a). Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Physical Chemistry Chemical Physics, 10(44), 6615-6620. doi:10.1039/B810189B
Chai, J.-D., & Head-Gordon, M. (2008b). Systematic optimization of long-range corrected hybrid density functionals. Journal of Chemical Physics, 128(8), 084106. doi:10.1063/1.2834918
Devillard, M., Declercq, R., Nicolas, E., Ehlers, A. W., Backs, J., Saffon-Merceron, N., . . . Bourissou, D. (2016). A Significant but Constrained Geometry Pt→Al Interaction: Fixation of CO2 and CS2, Activation of H2 and PhCONH2. Journal of the American Chemical Society, 138(14), 4917-4926. doi:10.1021/jacs.6b01320
Hariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica chimica acta, 28(3), 213-222. doi:10.1007/bf00533485
Harman, W. H., Lin, T.-P., & Peters, J. C. (2014). A d10 Ni–(H2) Adduct as an Intermediate in H-H Oxidative Addition across a Ni-B Bond. Angewandte Chemie International Edition, 53(4), 1081-1086. doi:10.1002/anie.201308175
Harman, W. H., & Peters, J. C. (2012). Reversible H2 Addition across a Nickel–Borane Unit as a Promising Strategy for Catalysis. Journal of the American Chemical Society, 134(11), 5080-5082. doi:10.1021/ja211419t
Holschumacher, D., Bannenberg, T., Hrib, C. G., Jones, P. G., & Tamm, M. (2008). Heterolytic Dihydrogen Activation by a Frustrated Carbene–Borane Lewis Pair. Angewandte Chemie International Edition, 47(39), 7428-7432. doi:10.1002/anie.200802705
Karunananda, M. K., & Mankad, N. P. (2017). Cooperative Strategies for Catalytic Hydrogenation of Unsaturated Hydrocarbons. ACS Catalysis, 7(9), 6110-6119. doi:10.1021/acscatal.7b02203
Khusnutdinova, J. R., & Milstein, D. (2015). Metal–Ligand Cooperation. Angewandte Chemie International Edition, 54(42), 12236-12273. doi:10.1002/anie.201503873
Frisch, M.J., et al. (2009). Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford.
Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2009). Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. Journal of Physical Chemistry B, 113(18), 6378-6396. doi:10.1021/jp810292n
Morris, R. H. (2015). Exploiting Metal–Ligand Bifunctional Reactions in the Design of Iron Asymmetric Hydrogenation Catalysts. Accounts of Chemical Research, 48(5), 1494-1502. doi:10.1021/acs.accounts.5b00045
Noyori, R., Yamakawa, M., & Hashiguchi, S. (2001). Metal−Ligand Bifunctional Catalysis: A Nonclassical Mechanism for Asymmetric Hydrogen Transfer between Alcohols and Carbonyl Compounds. The Journal of Organic Chemistry, 66(24), 7931-7944. doi:10.1021/jo010721w
Petersson, G. A., & Al‐Laham, M. A. (1991). A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms. Journal of Chemical Physics, 94(9), 6081-6090. doi:10.1063/1.460447
Petersson, G. A., Bennett, A., Tensfeldt, T. G., Al‐Laham, M. A., Shirley, W. A., & Mantzaris, J. (1988). A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements. Journal of Chemical Physics, 89(4), 2193-2218. doi:10.1063/1.455064
Phipps, M. J. S., Fox, T., Tautermann, C. S., & Skylaris, C.-K. (2015). Energy decomposition analysis approaches and their evaluation on prototypical protein–drug interaction patterns. Chemical Society Reviews, 44(10), 3177-3211. doi:10.1039/C4CS00375F
Rokob, T. A., & Pápai, I. (2013). Hydrogen Activation by Frustrated Lewis Pairs: Insights from Computational Studies. In G. Erker & D. W. Stephan (Eds.), Frustrated Lewis Pairs I: Uncovering and Understanding (pp. 157-211). Berlin, Heidelberg: Springer Berlin Heidelberg.
Skara, G., De Vleeschouwer, F., Geerlings, P., De Proft, F., & Pinter, B. (2017). Heterolytic Splitting of Molecular Hydrogen by Frustrated and Classical Lewis Pairs: A Unified Reactivity Concept. Scientific Reports, 7(1), 16024. doi:10.1038/s41598-017-16244-1
Spies, P., Erker, G., Kehr, G., Bergander, K., Fröhlich, R., Grimme, S., & Stephan, D. W. (2007). Rapid intramolecular heterolytic dihydrogen activation by a four-membered heterocyclic phosphane–borane adduct. Chemical Communications (47), 5072-5074. doi:10.1039/B710475H
Tasker, S. Z., Standley, E. A., & Jamison, T. F. (2014). Recent advances in homogeneous nickel catalysis. Nature, 509(7500), 299-309. doi:10.1038/nature13274
Tsoureas, N., Kuo, Y.-Y., Haddow, M. F., & Owen, G. R. (2011). Double addition of H2 to transition metal–borane complexes: a ‘hydride shuttle’ process between boron and transition metal centres. Chemical Communications, 47(1), 484-486. doi:10.1039/C0CC02245D
Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297-3305. doi:10.1039/B508541A
Welch, G. C., Juan, R. R. S., Masuda, J. D., & Stephan, D. W. (2006). Reversible, Metal-Free Hydrogen Activation. Science, 314(5802), 1124-1126. doi:10.1126/science.1134230
Welch, G. C., & Stephan, D. W. (2007). Facile Heterolytic Cleavage of Dihydrogen by Phosphines and Boranes. Journal of the American Chemical Society, 129(7), 1880-1881. doi:10.1021/ja067961j
Xu, X., & Truhlar, D. G. (2011). Accuracy of Effective Core Potentials and Basis Sets for Density Functional Calculations, Including Relativistic Effects, As Illustrated by Calculations on Arsenic Compounds. Journal of Chemical Theory and Computation, 7(9), 2766-2779. doi:10.1021/ct200234r
Yepes, D., Jaque, P., & Fernández, I. (2018). Hydrogenation of Multiple Bonds by Geminal Aminoborane-Based Frustrated Lewis Pairs. Chemistry – A European Journal, 24(35), 8833-8840. doi:10.1002/chem.201800864
Zeng, G., & Sakaki, S. (2013). Unexpected Electronic Process of H2 Activation by a New Nickel Borane Complex: Comparison with the Usual Homolytic and Heterolytic Activations. Inorganic Chemistry, 52(6), 2844-2853. doi:10.1021/ic301733r