กิจกรรมจำลองด้วยโปรแกรมไพทอนเพื่อประมาณพื้นที่ระหว่างกราฟสำหรับนักเรียนระดับชั้นมัธยมศึกษา

Main Article Content

ธนวิทย์ จีรุพันธ์

บทคัดย่อ

กิจกรรมการเรียนรู้ด้วยการจำลองด้วยไพทอน (Python) สำหรับการประมาณค่าพื้นที่ระหว่างเส้นโค้งนี้ถูกออกแบบขึ้นเพื่อสอนนักเรียนเกี่ยวกับการจำลองปัญหาที่มีพฤติกรรมเชิงกำหนด ซึ่งเป็นขั้นตอนสำคัญในการพัฒนาความสามารถในการสร้างแบบจำลองของนักเรียน กลุ่มเป้าหมายคือนักเรียนชั้นมัธยมศึกษาปีที่ 6 จำนวน 28 คน ได้เรียนรู้การใช้โปรแกรมไพทอนเพื่อประมาณค่าพื้นที่ระหว่างเส้นโค้งโดยใช้การจำลองแบบลงมือปฏิบัติที่พัฒนาขึ้น เมื่อเสร็จสิ้นกิจกรรม ได้มีการประเมินความสามารถของนักเรียนในการใช้ไพทอน (Python) เพื่อจำลองและประมาณค่าพื้นที่ระหว่างเส้นโค้ง ผลการประเมินแสดงให้เห็นว่ากิจกรรมที่ออกแบบสามารถปรับปรุงผลการปฏิบัติงานที่ต้องการได้ นอกจากนี้ ผลการประเมินยังแสดงให้เห็นว่านักเรียนมีความสนุกสนาน มองเห็นคุณค่า มีความสนใจ และมีความเชื่อมั่นในตนเองในการทำกิจกรรม ซึ่งนำไปสู่ผลลัพธ์ในเชิงบวก การศึกษานี้ชี้ให้เห็นถึงกลยุทธ์ที่ครูสามารถนำไปใช้เพื่อพัฒนาความสามารถพื้นฐานและความรู้ของนักเรียนในการเรียนรู้เกี่ยวกับการสร้างแบบจำลองต่อไป

Article Details

How to Cite
จีรุพันธ์ ธ. (2024). กิจกรรมจำลองด้วยโปรแกรมไพทอนเพื่อประมาณพื้นที่ระหว่างกราฟสำหรับนักเรียนระดับชั้นมัธยมศึกษา. วารสารวิทยาศาสตร์และวิทยาศาสตร์ศึกษา (JSSE), 7(2), 305–322. https://doi.org/10.14456/jsse.2024.24
บท
บทความวิจัยทางวิทยาศาสตร์ศึกษา

References

Albright, B. and Fox, W. P. (2019). Mathematical Modeling with Excel (2nd ed.). Chapman and Hall/CRC

Barros, F. J. (200). Deterministic simulation of hybrid flow components. In 11th IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT'07) (pp. 252-258).

Blum, W. and Leiß, D. (2006). How do students and teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum and S. Khan (Eds.), Mathematical modelling (ICTMA12): Education, engineering and economics (pp. 222–231). Horwood.

Borba, M. C., Askar, P., Engelbrecht, J., Gadanidis, G., Llinares, S. and Aguilar, M. S. (2016). Blended learning, e-learning and mobile learning in mathematics education. ZDM, 48(5), 589-610.

Brnic, M. and Greefrath, G. (2020). Learning mathematics with a digital textbook and its integrated digital tools: The KomNetMath project. In Proceedings of the Conference on Technology in Mathematics Teaching–ICTMT 14 (p. 73).

Cecconi, F. R., Manfren, M., Tagliabue, L. C., Ciribini, A. L. C. and De Angelis, E. (2017). Probabilistic behavioral modeling in building performance simulation: A Monte Carlo approach. Energy and Buildings, 148, 128-141.

Chowdhury, R. P. and Liu, X. (2014). Deterministic Simulation of Neutron Radiography and Tomography. Transactions, 111(1), 525-526.

Clark-Wilson, A., Robutti, O. and Thomas, M. (2020). Teaching with digital technology. ZDM, 52(7), 1223-1242.

Davadas, S. D. and Lay, Y. F. (2018). Factors Affecting Students’ Attitude toward Mathematics: A Structural Equation Modeling Approach. Eurasia Journal of Mathematics, Science and Technology Education, 14(1), 517-529.

English, L. D. (2012). Data modelling with first-grade students. Educational Studies in Mathematics, 81(1), 15-30.

Farihah, U. (2019). Student modelling in solving the polynomial functions problems using Geogebra approach. In IOP Conference Series: Earth and Environmental Science (pp. 012104). IOP Publishing.

Ferri, R. B. (2017). Learning how to teach mathematical modeling in school and teacher education. Springer.

Frejd, P. and Ärlebäck, J. B. (2017). Initial results of an intervention using a mobile game app to simulate a pandemic outbreak. In G. Stillman, W. Blum and G. Kaiser (Eds.), Mathematical modelling and applications: International perspectives on the teaching and learning of mathematical modelling (pp. 283-292). Springer.

Galbraith, P., Holton, D. and Turner, R. (2020). Rising to the challenge: Promoting mathematical modelling as real-world problem solving. In G. Stillman, G. Kaiser and C. Lampen (Eds.), Mathematical modelling education and sense-making: International perspectives on the teaching and learning of mathematical modelling (pp. 23-40). Springer.

Gandrud, C. and Williams, L. K. (2017). Simulating Probabilistic Long-Term Effects in Models with Temporal Dependence. R Journal, 9(2).

Giordano, F. R., Fox, W. P. and Horton, S. B. (2013). A first course in mathematical modeling. Cengage Learning.

Gordon, S. I. and Guilfoos, B. (2017). Introduction to Modeling and Simulation with MATLAB® and Python (1st ed.). Chapman and Hall/CRC.

Greefrath, G. (2011). Using technologies: New possibilities of teaching and learning modelling – Overview. In G. Kaiser, W. Blum, R. Borromeo Ferri and G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (Vol. 1, pp. 301-304). Springer.

Greefrath, G. and Siller, H. S. (2017). Modelling and simulation with the help of digital tools. In G. Stillman, W. Blum and G. Kaiser (Eds.), Mathematical modelling and applications: International perspectives on the teaching and learning of mathematical modelling (pp. 529-539). Springer.

Greefrath, G., Hertleif, C. and Siller, H. S. (2018). Mathematical modelling with digital tools—a quantitative study on mathematising with dynamic geometry software. ZDM Mathematics Education, 50, 233–244.

Hartmann, L. M., Krawitz, J. and Schukajlow, S. (2021). Create your own problem! When given descriptions of real-world situations, do students pose and solve modelling problems?. ZDM Mathematics Education, 53(4), 919–935.

Kazak, S., Pratt, D. and Gökce, R. (2018). Sixth grade students’ emerging practices of data modelling. ZDM Mathematics Education, 50(7), 1151–1163.

Kin, W. and Chan, V. (2011). Foundations of simulation modeling. Wiley Encyclopedia of Operations Research and Management Science. New York, USA.: John Wiley & Sons

Kotelawala, U. (2011). Stochastic case problems for the secondary classroom with reliability theory. In G. Kaiser, W. Blum, R. Borromeo Ferri and G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling: International perspectives on the teaching and learning of mathematical modelling (Vol. 1, pp. 387-396). Springer.

Krawitz, J. and Schukajlow, S. (2018). Do students value modelling problems, and are they confident they can solve such problems? Value and self-efficacy for modelling, word, and intra-mathematical problems. ZDM, 50(1), 143-157.

Krutikhina, M. V., Vlasova, V. K., Galushkin, A. A. and Pavlushin, A. A. (2018). Teaching of Mathematical Modeling Elements in the Mathematics Course of the Secondary School. Eurasia Journal of Mathematics, Science and Technology Education, 14(4), 1305-1315.

Leung, I. K. C. (2013). Beyond the modelling process: An example to study the logistic model of customer lifetime value in business marketing. In G. Stillman, G. Kaiser, W. Blum and J. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice. International perspectives on the teaching and learning of mathematical modelling (pp. 421-430). Springer.

Lingefjärd, T. and Holmquist, M. (2005). To assess students' attitudes, skills and competencies in mathematical modeling. Teaching Mathematics and Its Applications: International Journal of the IMA, 24(2-3), 123-133.

Maria, A. (1997). Introduction to modeling and simulation. In Proceedings of the 29th conference on Winter simulation (pp. 7-13).

Ortega, M. and Puig, L. (2017). Using modelling and tablets in the classroom to learn quadratic functions. In G. Stillman, W. Blum and G. Kaiser (Eds.), Mathematical modelling and applications: International perspectives on the teaching and learning of mathematical modelling (pp. 565-575). Springer.

Paler, A., Kinseher, J., Polian, I. and Hayes, J. P. (2013). Approximate simulation of circuits with probabilistic behavior. In Prodeedings of the 2013 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS) (pp. 95-100). IEEE.

Papageorgiou, A. and Paskov, S. H. (1999). Deterministic simulation for risk management. The Journal of Portfolio Management, 25(5), 122-127.

Patel, A. and Pfannkuch, M. (2018). Developing a statistical modeling framework to characterize Year 7 students’ reasoning. ZDM Mathematics Education, 50(7), 1197–1212.

Rodríguez Gallegos, R. (2015). A differential equations course for engineers through modelling and technology. In G. Stillman, W. Blum and M. Salett Biembengut (Eds.), Mathematical modelling in education research and practice: International perspectives on the teaching and learning of mathematical modelling (pp. 161-170). Springer.

Sánchez, J. Á. and Arroyo, F. (2019). Simulating probabilistic networks of polarized evolutionary processors. Procedia Computer Science, 159, 1421-1430.

Schönbrodt, S., Wohak, K. and Frank, M. (2022). Digital tools to enable collaborative mathematical modeling online. Modelling in Science Education and Learning, 15(1), 151-174.

Schukajlow, S., Kolter, J. and Blum, W. (2015). Scaffolding mathematical modelling with a solution plan. ZDM, 47(7), 1241-1254.

Schukajlow, S., Krug, A. and Rakoczy, K. (2015). Effects of prompting multiple solutions for modelling problems on students’ performance. Educational studies in Mathematics, 89, 393–417.

Schukajlow, S., Leiss, D., Pekrun, R., Blum, W., Müller, M. and Messner, R. (2012). Teaching methods for modelling problems and students’ task-specific enjoyment, value, interest and self-efficacy expectations. Educational studies in mathematics, 79, 215-237.

Shahbari, J. A. and Peled, I. (2017). Modelling in primary school: Constructing conceptual models and making sense of fractions. International Journal of Science and Mathematics Education, 15, 371–391.

Sinclair, N. and Jackiw, N. (2010). Modeling practices with The Geometer's Sketchpad. In R. Lesh, P. L. Galbraith, C. R. Haines, A. Hurford (Eds.), Modeling students' mathematical modeling competencies (pp. 541-554). Springer.

Stender, P. and Kaiser, G. (2015). Scaffolding in complex modelling situations. ZDM, 47(7), 1255-1267.

Stillman, G. (2010). Implementing applications and modelling in secondary school: Issues for teaching and learning. In Mathematical Applications And Modelling: Yearbook 2010, Association of Mathematics Educators (pp. 300-322).

Tobrawa, S., Münch, G. V., Denkena, B. and Dittrich, M. A. (2022). Design of simulation models. In J. Stjepandić, M. Sommer, B. Denkena and M. A. Dittrich (Eds.), DigiTwin: An approach for production process optimization in a built environment (pp. 181-204). Springer.

Tropper, N., Leiss, D. and Hänze, M. (2015). Teachers’ temporary support and worked-out examples as elements of scaffolding in mathematical modeling. ZDM, 47(7), 1225-1240.

Urgena, J. N. A. and Lapinid, M. R. C. (2017). The Use of GeoGebra Applets: Students’ Attitudes and Achievement in Learning Quadratic Functions, Equations and Inequalities. Advanced Science Letters, 23(2), 1118-1121.

Volosencu, C. and Ryoo, C. S. (2022). Simulation Modeling. IntechOpen.

Wake, G. (2015). Preparing for workplace numeracy: a modelling perspective. ZDM, 47, 675–689.

Zárate Ceballos, H., Parra Amaris, J.E., Jiménez Jiménez, H., Romero Rincón, D.A., Agudelo Rojas, O. and Ortiz Triviño, J.E. (2021). Introduction to Simulation. In: Wireless Network Simulation. Apress, Berkeley, CA.

Zöllner, C., Barkowsky, M., Maximova, M. and Giese, H. (2021). On the Complexity of Simulating Probabilistic Timed Graph Transformation Systems. In International Conference on Graph Transformation (pp. 262-279). Springer, Cham.