Recidivism Database and Big Data Implications for Policy and Strategy on Recidivism Prevention and Offender Rehabilitation in Thailand

Main Article Content

Tatchalerm Sudhipongpracha
Chavanut Janekarn
Panot Siriaya
Phimphon NetPhukkan
Jiraporn Chomboon
ty Wattana

Abstract

The objectives of this research are four-fold. First, it seeks to study how criminal recidivism data are collected and managed by government agencies in Thailand’s criminal justice system. Second, the current data privacy measures are analyzed. Third, the study examines how the Thai government agencies use criminal recidivism data, compared to other 17 countries, to prevent crimes and rehabilitate ex-offenders. Finally, this research explores the use of Big Data in field of crime control and offender rehabilitation.  Qualitative data were collected using documentary research, in-depth interview, observation, and focus group discussion with 1-3 representatives from the Thai criminal justice agencies. The results have been used to form suggestions regarding the development of recidivism database and Big Data implications for recidivism prevention and offender rehabilitation in Thailand.


The findings show that each agency has its own definition of recidivism. Currently, no central authority exists to coordinate and manage the disparate recidivism data. Also, the 1997 Official Information Act classifies criminal recidivism data as private data and therefore places limitations on how the data can be shared and used. The article culminates in a set of policy recommendations. Each criminal justice agency should be permitted to maintain its definition of recidivism. The Office of Attorney General should be designated as the data coordinating center for other agencies’ data bases. For the implementation of Big Data analysis, the government must coordinate more with the private sector who operate the relevant Big Data.

Article Details

How to Cite
Sudhipongpracha, T. ., Janekarn, C. ., Siriaya, P. ., NetPhukkan, P. ., Chomboon, J. ., & Wattana, ty. (2020). Recidivism Database and Big Data Implications for Policy and Strategy on Recidivism Prevention and Offender Rehabilitation in Thailand. Journal of Thai Justice System, 13(2), 25–52. Retrieved from https://so04.tci-thaijo.org/index.php/JTJS/article/view/245278
Section
Research Articles

References

จุฑารัตน์ เอื้ออำนวย. (2551). การสำรวจข้อมูลสถิติอาชญากรรมในประเทศไทย: ข้อเสนอเพื่อการพัฒนากระบวนการยุติธรรมยุคใหม่. วารสารกระบวนการยุติธรรม, 1(2), 11-36.

พงศ์กุลธร โรจนวิรุฬห์, สุรัตน์ สาเรือง และอิทธิพล สุขยิ่ง. (2558). การสำรวจข้อมูลการกระทำผิดซ้ำของ ผู้ที่เคยตกเป็นผู้ต้องหาในคดีอาญา. วารสารกระบวนการยุติธรรม, 8(1), 1-17.

พงศ์กุลธร โรจน์วิรุฬ และคณะ. (2556). โครงการสำรวจข้อมูลการกระทำผิดซ้ำของผู้ที่เคยตกเป็นผู้ต้องหาคดีอาญา. กรุงเทพฯ: สำนักงานกิจการยุติธรรม.

สำนักงานกิจการยุติธรรม. (2559). แผนแม่บทเทคโนโลยีสารสนเทศกระบวนการยุติธรรมแห่งชาติ ฉบับที่ 2. กรุงเทพฯ: ผู้แต่ง.

สำนักงานกิจการยุติธรรม. (2561). เอกสารบรรยายสรุปศูนย์แลกเปลี่ยนข้อมูลกระบวนการยุติธรรม: Data Exchange Center. กรุงเทพฯ: ผู้แต่ง.

อัจราพรรณ จรัสวัฒน์ และคณะ. (2551). แผนการพัฒนาฐานข้อมูลการกระทำผิดซ้ำ. กรุงเทพฯ: สำนักงานกิจการยุติธรรม.

Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society, 15(5), 662-679.

Brayne, S. (2017). Big data surveillance: The case of policing. American Sociological Review, 82(5), 977-1008.

Chainey, S., Tompson, L., & Uhlig, S. (2008). The utility of hotspot mapping for predicting spatial patterns of crime. Security Journal, 21(1-2), 4-28.

Cooper, A. D., Durose, M. R., & Snyder, H. N. (2014). Recidivism of prisoners released from 30 states in 2005: Patterns from 2005 to 2010. US Department of Justice.

De Mauro, A., Greco, M., & Grimaldi, M. (2016). A formal definition of Big Data based on its essential features. Library Review, 65(3), 122-135.

Elderbroom, B., & King, R. (2014). Improving recidivism as a performance measure. Urban Institute.

Fazel, S., & Wolf, A. (2015). A systematic review of criminal recidivism rates worldwide: Current difficulties and recommendations for best practice. Retrieved January 17, 2020, from https://doi.org/10.1371/journal.pone.0130390

Greengard, S. (2012). Policing the future. Communications of the ACM, 55(3), 19-21.

Johnson, J. L. (2017). Comparison of recidivism studies: AOUSC, USSC, and BJS. Fed. Probation, 81(1), 52.

LaCourse, A., Listwan, S. J., Reid, S., & Hartman, J. L. (2019). Recidivism and reentry: The role of individual coping styles. Crime & Delinquency, 65(1), 46-68.

Maltz, M. (1984). Recidivism. Orlando, FL: Academic.

Mohler, G. O., Short, M. B., Malinowski, S., Johnson, M., Tita, G. E., Bertozzi, A. L. et al. (2015). Randomized controlled field trials of predictive policing. Journal of the American Statistical Association, 110(512), 399-1411.

Ostermann, M., Salerno, L. M., & Hyatt, J. M. (2015). How different operationalizations of recidivism impact conclusions of effectiveness of parole supervision. Journal of Research in Crime and Delinquency, 52(6), 771-796.

Ringland, C. (2013). Measuring recidivism: Police versus court data. Retrieved January 17, 2020, from https://www.bocsar.nsw.gov.au/Publications/CJB/cjb175.pdf

Ruggero, T., Dougherty, J., & Klofas, J. (2015). Measuring recidivism: Definitions, errors and data sources. Rochester, New York: Center for Public Safety Initiatives.

Snijders, C., Matzat, U., & Reips, U. D. (2012). "Big Data": Big gaps of knowledge in the field of internet science. International Journal of Internet Science, 7(1), 1-5.

Wang, X., Gerber, M., & Brown D, E. (2012). Automatic crime prediction using events extracted from twitter posts. SBP, 12, 231-238.

Ward, J. S., & Barker, A. (2013). Undefined by data: A survey of big data definitions. Retrieved January 17, 2020, from http://citeseerx.ist.psu.edu/viewdoc/download?doi =10.1.1.705.9909&rep=rep1&type=pdf

Williams, M., Edwards, A., Housley, W., Burnap, P., Rana, O., Avis, N. et al. (2013). Policing cyber-neighbourhoods: Tension monitoring and social media networks. Policing and society, 23(4), 461-481.