Comparison of the vertical deflection of loaded T and RSF stiffeners of marine structures
DOI:
https://doi.org/10.33175/mtr.2020.224159Keywords:
Rectangular Support Flange Stiffener (RSF), Beam deflection, Simply supported beam, Non-conventional stiffener, Stiffened plateAbstract
This work aims to compare the vertical deflection between perfect T and Rectangular Support Flange (RSF) stiffeners when subjected to forces and pressures. The geometry of stiffener models comprises the conventional T stiffener model design, used in double hull oil tankers, and the RSF stiffener, which is of a modified type whose design is based on T stiffener specifications. The deflection theories of simply supported beam were studied by the double integral method. Finite Element Analysis (FEA) is used to design and simulate the vertical deflection and the maximum equivalent stress of stiffeners when subjected to force and pressure under the same boundary condition. Various stiffener models are studied, and the FEA results presented graphically. The theoretical and FEA results are in good agreement. The load-deflection curves show that the performance of the RSF stiffener is superior to that of the conventional T stiffener.
References
Azmi, M. R., Yatim, M. Y. M., Esa, A., & Badaruzzaman, W. H. W. (2017). Experimental studies on perforated plate girders with inclined stiffeners. Thin-Walled Structures, 117, 247-256. doi:10.1016/j.tws.2017.04.021
Badran, S. F., Nassef, A. O., & Metwalli, S. M. (2007). Stability of Y stiffeners in ship plating under uniaxial compressive loads. Ships and Offshore Structures, 2(1), 87-94. doi:10.1533/saos.2006.0138
Badran, S. F., Nassef, A. O., & Metwalli, S. M. (2009). Y-stiffened panel multi-objective optimization using genetic algorithm. Thin-Walled Structures, 47(11), 1331-1342. doi:10.1016/j.tws.2009.03.011
Badran, S. F., Saddek, A. B., & Leheta, H. W. (2013). Ultimate strength of Y and T stiffeners subjected to lateral loads with three different levels of initial imperfection. Ocean Engineering, 61, 12-25. doi:10.1016/j.oceaneng.2012.12.022
Beer, F. P., Johnston, E. R., Dewolf, J. T., & Mazurek, D. F. (2013). Mechanics of materials. 6th ed. McGraw-Hill.
Dundar, C., Tanrikulu, A. K., & Frosch, R. J. (2015). Prediction of load: Deflection behavior of multi-span FRP and steel reinforced concrete beams. Composite Structures, 132, 680-693. doi:10.1016/j.compstruct.2015.06.018
Leheta, H. W., Elhanafi, A. S., & Badran, S. F. (2016). A numerical study of the ultimate strength of Y-deck panels under longitudinal in-plane compression. Thin-Walled Structures, 100, 134-146. doi:10.1016/j.tws.2015.12.013
Li, X. F., & Kang, Y. L. (2015). Effect of horizontal reaction force on the deflection of short simply supported beams under transverse loadings. International Journal of Mechanical Sciences, 99, 121-129. doi:10.1016/j.ijmecsci.2015.05.010
Paik, J. K., & Kim, B. J. (2002). Ultimate strength formulations for stiffened panels under combined axial load, in-plane bending and lateral pressure: A benchmark study. Thin-Walled Structures, 40(1), 45-83. doi:10.1016/S0263-8231(01)00043-X
Pytel, A., & Singer, F. L. (1981). Strength of materials. Journal of the Franklin Institute 71(96), 183-192.
Rasheed, H. A., Ahmadi, H., & Abouelleil, A. E. (2017). Lateral-torsional buckling of simply supported anisotropic steel-FRP rectangular beams under pure bending condition. Engineering Structures, 146, 127-139. doi:10.1016/j.engstruct.2017.05.037
Roark, R. J., & Young, W. C. (1989). Roark's formulas for stress strain. Journal of Applied Mechanics, 43(3), 624.
Saad-Eldeen, S., Garbatov, Y., & Soares, C. G. (2016). Ultimate strength analysis of highly damaged plates. Marine Structures, 45, 63-85. doi:10.1016/j.marstruc.2015.10.006
Sofi, A., & Muscolino, G. (2015). Static analysis of Euler-Bernoulli beams with interval Young’s modulus. Computers & Structures, 156, 72-82. doi:10.1016/j.compstruc.2015.04.002
Tanaka, S., Yanagihara, D., Yasuoka, A., Harada, M., Okazawa, S., Fujikubo, M., & Yao, T. (2014). Evaluation of ultimate strength of stiffened panels under longitudinal thrust. Marine Structures, 36(36), 21-50. doi:10.1016/j.marstruc.2013.11.002
Timmers, R., & Lener, G. (2016). Collapse mechanisms and load: Deflection curves of unstiffened and stiffened plated structures from bridge design. Thin-Walled Structures, 106, 448-458. doi:10.1016/j.tws.2016.05.020
Witkowska, M., & Soares, C. G. (2009). Ultimate strength of stiffened plates with local damage on the stiffener. UK: Taylor & Francis Group. doi:10.1201/9780203874981.ch16
Xu, M. C., Song, Z. J., Pan, J., & Soares, C. G. (2017). Ultimate strength assessment of continuous stiffened panels under combined longitudinal compressive load and lateral pressure. Ocean Engineering, 139, 39-53. doi:10.1016/j.oceaneng.2017.04.042
Downloads
Published
Issue
Section
License
Copyright: CC BY-NC-ND 4.0