Comparison of the vertical deflection of loaded T and RSF stiffeners of marine structures

Authors

  • Ratthakrit Reabroy Faculty of International Maritime Studies, Kasetsart University, Chonburi 20230, Thailand
  • Ke Sun College of Shipbuilding Engineering, Harbin Engineering University, Harbin 15000, China

DOI:

https://doi.org/10.33175/mtr.2020.224159

Keywords:

Rectangular Support Flange Stiffener (RSF), Beam deflection, Simply supported beam, Non-conventional stiffener, Stiffened plate

Abstract

This work aims to compare the vertical deflection between perfect T and Rectangular Support Flange (RSF) stiffeners when subjected to forces and pressures. The geometry of stiffener models comprises the conventional T stiffener model design, used in double hull oil tankers, and the RSF stiffener, which is of a modified type whose design is based on T stiffener specifications. The deflection theories of simply supported beam were studied by the double integral method. Finite Element Analysis (FEA) is used to design and simulate the vertical deflection and the maximum equivalent stress of stiffeners when subjected to force and pressure under the same boundary condition. Various stiffener models are studied, and the FEA results presented graphically. The theoretical and FEA results are in good agreement. The load-deflection curves show that the performance of the RSF stiffener is superior to that of the conventional T stiffener.

References

Azmi, M. R., Yatim, M. Y. M., Esa, A., & Badaruzzaman, W. H. W. (2017). Experimental studies on perforated plate girders with inclined stiffeners. Thin-Walled Structures, 117, 247-256. doi:10.1016/j.tws.2017.04.021

Badran, S. F., Nassef, A. O., & Metwalli, S. M. (2007). Stability of Y stiffeners in ship plating under uniaxial compressive loads. Ships and Offshore Structures, 2(1), 87-94. doi:10.1533/saos.2006.0138

Badran, S. F., Nassef, A. O., & Metwalli, S. M. (2009). Y-stiffened panel multi-objective optimization using genetic algorithm. Thin-Walled Structures, 47(11), 1331-1342. doi:10.1016/j.tws.2009.03.011

Badran, S. F., Saddek, A. B., & Leheta, H. W. (2013). Ultimate strength of Y and T stiffeners subjected to lateral loads with three different levels of initial imperfection. Ocean Engineering, 61, 12-25. doi:10.1016/j.oceaneng.2012.12.022

Beer, F. P., Johnston, E. R., Dewolf, J. T., & Mazurek, D. F. (2013). Mechanics of materials. 6th ed. McGraw-Hill.

Dundar, C., Tanrikulu, A. K., & Frosch, R. J. (2015). Prediction of load: Deflection behavior of multi-span FRP and steel reinforced concrete beams. Composite Structures, 132, 680-693. doi:10.1016/j.compstruct.2015.06.018

Leheta, H. W., Elhanafi, A. S., & Badran, S. F. (2016). A numerical study of the ultimate strength of Y-deck panels under longitudinal in-plane compression. Thin-Walled Structures, 100, 134-146. doi:10.1016/j.tws.2015.12.013

Li, X. F., & Kang, Y. L. (2015). Effect of horizontal reaction force on the deflection of short simply supported beams under transverse loadings. International Journal of Mechanical Sciences, 99, 121-129. doi:10.1016/j.ijmecsci.2015.05.010

Paik, J. K., & Kim, B. J. (2002). Ultimate strength formulations for stiffened panels under combined axial load, in-plane bending and lateral pressure: A benchmark study. Thin-Walled Structures, 40(1), 45-83. doi:10.1016/S0263-8231(01)00043-X

Pytel, A., & Singer, F. L. (1981). Strength of materials. Journal of the Franklin Institute 71(96), 183-192.

Rasheed, H. A., Ahmadi, H., & Abouelleil, A. E. (2017). Lateral-torsional buckling of simply supported anisotropic steel-FRP rectangular beams under pure bending condition. Engineering Structures, 146, 127-139. doi:10.1016/j.engstruct.2017.05.037

Roark, R. J., & Young, W. C. (1989). Roark's formulas for stress strain. Journal of Applied Mechanics, 43(3), 624.

Saad-Eldeen, S., Garbatov, Y., & Soares, C. G. (2016). Ultimate strength analysis of highly damaged plates. Marine Structures, 45, 63-85. doi:10.1016/j.marstruc.2015.10.006

Sofi, A., & Muscolino, G. (2015). Static analysis of Euler-Bernoulli beams with interval Young’s modulus. Computers & Structures, 156, 72-82. doi:10.1016/j.compstruc.2015.04.002

Tanaka, S., Yanagihara, D., Yasuoka, A., Harada, M., Okazawa, S., Fujikubo, M., & Yao, T. (2014). Evaluation of ultimate strength of stiffened panels under longitudinal thrust. Marine Structures, 36(36), 21-50. doi:10.1016/j.marstruc.2013.11.002

Timmers, R., & Lener, G. (2016). Collapse mechanisms and load: Deflection curves of unstiffened and stiffened plated structures from bridge design. Thin-Walled Structures, 106, 448-458. doi:10.1016/j.tws.2016.05.020

Witkowska, M., & Soares, C. G. (2009). Ultimate strength of stiffened plates with local damage on the stiffener. UK: Taylor & Francis Group. doi:10.1201/9780203874981.ch16

Xu, M. C., Song, Z. J., Pan, J., & Soares, C. G. (2017). Ultimate strength assessment of continuous stiffened panels under combined longitudinal compressive load and lateral pressure. Ocean Engineering, 139, 39-53. doi:10.1016/j.oceaneng.2017.04.042

Downloads

Published

2020-02-29

How to Cite

Reabroy, R. ., & Sun, K. . (2020). Comparison of the vertical deflection of loaded T and RSF stiffeners of marine structures. Maritime Technology and Research, 2(3), 131–158. https://doi.org/10.33175/mtr.2020.224159