Managing marine environmental pollution using Artificial Intelligence

Authors

  • Nitin Agarwala National Maritime Foundation, New Delhi, India

DOI:

https://doi.org/10.33175/mtr.2021.248053

Keywords:

Artificial Intelligence, Environment protection, Machine Learning, Marine pollution, Sustainability

Abstract

The marine environment has deteriorated to the extent that it has begun to impact human health and the planet itself. The primary causes of this deterioration are an increasing population, the Industrial Revolution, and the increased use of fossil fuels.  While the damage done to the environment cannot be undone, the impact can be lessened with a better understanding of the ocean and with monitoring future pollution using technology. Such an effort will help achieve sustainability, as laid out by the Sustainable Development Goals 2030 of the United Nations. Though efforts have been made to monitor the ocean for pollutants, both physically and remotely, interpreting the data collected is a humungous task due to the high volume of data. In reply, technology again provides a solution. One such technology, namely ‘Artificial Intelligence’ (‘AI’), can be used to understand and monitor marine pollution, and is the topic of discussion in this article. In doing so, the article will discuss the emerging opportunities and risks associated with the use of AI in managing marine environmental pollution through sustainability. To strengthen the argument, use-cases of AI in the marine environment and their scalability are discussed. However, these cases are considered merely a stimulus for a better and a larger variety of solutions to follow in the ever-evolving domain of AI.

References

Agarwala, N. (2020). Monitoring the ocean environment using robotic systems: Advancements, trends, and challenges. Marine Technology Society Journal, 54(5), 42-60. doi:10.4031/MTSJ.54.5.7

Boehmer-Christiansen, S. (1982). The scientific basis of marine pollution control. Marine Policy, 6(1), 2-10. doi:10.1016/0308-597x(82)90038-0

Biermann, L., Clewley, D., Martinez-Vicente, V., & Topouzelis, K. (2020). Finding plastic patches in coastal waters using optical satellite data. Scientific Reports, 10, 5364. doi:10.1038/s41598-020-62298-z

Burke, L., Reytar, K., Spalding, M., & Perry, A. (2011). Reefs at risk revisited. World Resources Institute. Retrieved from https://www.wri.org/publication/reefs-risk-revisited

Camps-Valls, G. (2009). Machine learning in remote sensing data processing. In Proceedings of the 2009 IEEE International Workshop on Machine Learning for Signal Processing. Grenoble, France. doi:10.1109/MLSP.2009.5306233

Choney, S. (2020). Microsoft Hackathon leads to AI and sustainability collaboration to rid plastic from rivers and the ocean. Microsoft. Retrieved from https://news.microsoft.com/features/ microsoft-hackathon-leads-to-ai-and-sustainability-collaboration-to-rid-plastic-from-rivers-and-the-ocean

Clark, C. D. (1993). Satellite remote sensing for marine pollution investigations. Marine Pollution Bulletin, 26(7), 357-368. doi:10.1016/0025-326X(93)90182-J

Costello, M. (2020). AI is a promising new tool for monitoring marine biodiversity. University of Auckland. Retrieved from https://www.oceansofbiodiversity.auckland.ac.nz/2020/06/22/ai-is-a-promising-new-tool-for-monitoring-marine-biodiversity

DeWitte, S. N. (2014). Mortality risk and survival in the aftermath of the medieval black death. PloS One, 9(5), e96513. doi:10.1371/journal.pone.0096513

Diaz, J. (2020). World Ocean Day: Some examples of AI use in the maritime domain. ActuIA. Retrieved from https://www.actuia.com/english/world-ocean-day-some-examples-of-ai-use-in-the-maritime-domain

EU Commission. (2015). Project CORAIL: Coral reefs in a changing world: Ecosystem services from coral reefs: Public tools for decision-making in New Caledonia and French Polynesia. Retrieved from https://ec.europa.eu/environment/nature/biodiversity/best/projects/current/ pacific_en.htm

Fulton, M., Jungseok, H., Islam, M. J., & Sattar, J. (2018). Robotic detection of marine litter using deep visual detection models, computer science and engineering. In Proceedings of the International Conference on Robotics and Automation. Montreal, Canada, doi:10.1109/ICRA.2019.8793975

Garcia-Pineda, O., Holmes, J., Rissing, M., Jones, R., Wobus, C., Svejkovsky, J., & Hess, M. (2017). Detection of oil near shorelines during the deepwater horizon oil spill using Synthetic Aperture Radar (SAR). Remote Sensing, 9(6), 567. doi:10.3390/rs9060567

Hafeez, S., Wong, M. S., Abbas, S., Kwok, C. Y. T., Nichol, J., Lee, K. H., Tang, D., & Pun, L. (2018). Detection and monitoring of marine pollution using remote sensing technologies. In Fouzia, H. B. (Ed.). Monitoring of Marine Pollution. IntechOpen. doi:10.5772/intechopen.81657

Harris, B. (2018). The latest weapons in the fight against ocean plastic? Drones and an algorithm. World Economic Forum. Retrieved from https://www.weforum.org/agenda/2018/06/this-ai-is-learning-to-recognize-ocean-plastic-using-drone-photos

Heron, S. F., Eakin, C. M., Douvere, F., Anderson, K., Day, J. C., Geiger, E., Hoegh-Guldberg, O., van Hooidonk, R., Hughes, T., Marshall, P., & Obura, D. (2017). Impacts of climate change on World Heritage coral reefs: A first global scientific assessment. Paris: UNESCO World Heritage Centre.

Japan News Asia News Network. (2018). Japan to monitor microplastic pollution with AI device. Retrieved from https://www.nationthailand.com/news/30353025

Just, V. (2020). Using AI to map marine environments. Phys.Org. Retrieved from https://phys.org/news/2020-05-ai-marine-environments.html

Lei, M., Yu, L., Xueliang, Z., Yuanxin, Y., Gaofei, Y., & Brian, A. J. (2019). Deep learning in remote sensing applications: A meta-analysis and review. Journal of Photogrammetry and Remote Sensing, 152, 166-177, doi:10.1016/j.isprsjprs.2019.04.015.

Li, Y. & Zhang, Y. (2014). Synthetic aperture radar oil spills detection based on morphological characteristics. Geo-Spatial Information Science, 17(1), 8-16. doi:10.1080/10095020.2014.883109

Li, X., Bin, L., Gang, Z., Yibin, R., Shuangshang, Z., Yingjie, L., Le, G., Yuhai, L., Bin, Z., & Fan. W. (2020). Deep-learning-based information mining from ocean remote-sensing imagery, National Science Review, 7(10), 1584-1605. doi:10.1093/nsr/nwaa047

Loughland, R. A., & Saji, B. (2008). Remote sensing: A tool for managing marine pollution in the Gulf. In Abuzinada, A. H., Barth, H. J., Krupp, F., Böer, B., & Al-Abdessalaam, T. Z. (Eds.). Protecting the Gulf’s Marine Ecosystems from Pollution. Birkhäuser Basel. doi:10.1007/978-3-7643-7947-6_7

Kelley, A. C., & Williamson, J. G. (1984). Population growth, industrial revolutions, and the urban transition. Population and Development Review, 10(3), 419-441. doi:10.2307/1973513

Kubat, M., Holte, R. C., & Matwin, S. (1998). Machine learning for the detection of oil spills in satellite radar images. Machine Learning, 30, 195-215. doi:10.1023/A:1007452223027

Macaulay, T. (2020). AI detects plastics in the oceans by analyzing satellite images. The Next Web. Retrieved from https://thenextweb.com/neural/2020/04/23/ai-detects-plastics-in-the-oceans-by-analyzing-satellite-images/

Maximenko, N., Corradi, P., Law, K. L., Van Sebille, E., Garaba, S. P., Lampitt, R. S., Galgani, F., Martinez-Vicente, V., Goddijn-Murphy, L., Veiga, J. M., Thompson, R. C., Maes, C., Moller, D., Löscher, C. R., Addamo, A. M., Lamson, M. R., Centurioni, L. R., Posth, N. R., Lumpkin, R., Vinci, M., Martins, A. M., Pieper, C. D., Isobe, A., Hanke, G., Edwards, M., Chubarenko, I. P., Rodriguez, E., Aliani, S., Arias, M., Asner, G. P., Brosich, A., Carlton, J. T., Chao, Y., Cook, A. M., Cundy, A. B., Galloway, T. S., Giorgetti, A., Goni, G. J., Guichoux, Y., Haram, L. E., Hardesty, B. D., Holdsworth, N., Lebreton, L., Leslie, H. A., Macadam-Somer, I., Mace, T., Manuel, M., Marsh, R., Martinez, E., Mayor, D. J., Le, M. M., Molina Jack, M. E., Mowlem, M. C., Obbard, R. W., Pabortsava, K., Robberson, B., Rotaru, A. E., Ruiz, G. M., Spedicato, M. T., Thiel, M., Turra, A., & Wilcox, C. (2019). Toward the integrated marine debris observing system. Frontiers in Marine Science, 6, 447. doi:10.3389/fmars.2019.00447

Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing, 39, 9, 2784-2817. doi:10.1080/01431161.2018.1433343

Meyer, R. (2019). The Ocean Cleanup successfully collects ocean plastic, aims to scale design. Mongabay. Retrieved from https://news.mongabay.com/2019/10/the-ocean-cleanup-successfully-collects-ocean-plastic-aims-to-scale-design

PwC. (2018). Fourth Industrial Revolution for the earth: Harnessing artificial intelligence for the earth. PwC. Retrieved from https://www.pwc.com/gx/en/news-room/docs/ai-for-the-earth.pdf

Pimentel, D., Huang, X., Codova, A., & Pimentel, M. (1997). Impact of a growing population on natural resources: The challenge for environmental management. Frontiers: The Interdisciplinary Journal of Study Abroad, 3(2), 105-131.

Ponce de Leon, S. (2019). Can AI save our oceans? Let’s start with the data. Forbes. Retrieved from https://www.forbes.com/sites/cognitiveworld/2019/09/17/can-ai-save-our-oceans-lets-start-with-the-data/#64eae90c700d

Rayome, A. D. N. (2019). How AI could save the environment. TechRepublic. Retrieved from https://www.techrepublic.com/article/how-ai-could-save-the-environment

Science Daily. (2018). Major natural carbon sink may soon become carbon source. Purdue University. ScienceDaily. Retrieved from https://www.sciencedaily.com/releases/2018/11/ 181120073635.htm

UN. (2015). A/RES/70/1, Transforming our world: The 2030 agenda for sustainable development. Retrieved from https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981

UN. (2017). The ocean conference, factsheet. New York. Retrieved from https://www.un.org/ sustainabledevelopment/wp-content/uploads/2017/05/Ocean-fact-sheet-package.pdf

UNEP. (2018). Why Protecting coral reefs matters. Retrieved from https://www.unenvironment.org/explore-topics/oceans-seas/what-we-do/protecting-coral-reefs/why-protecting-coral-reefs-matters

Ukaogo, P. O. E., Ugochukwu, O., & Chibuzo, V. (2020). Environmental pollution: Causes, effects, and the remedies. In Chowdhary, P., Raj, A., Verma, D., & Akhter, Y. (Eds.). Microorganisms for Sustainable Environment and Health (pp. 419-429). doi:10.1016/B978-0-12-819001-2.00021-8

Watanabe, J. I., Yang, S., & Miura, N. (2019). Underwater and airborne monitoring of marine ecosystems and debris. Journal of Applied Remote Sensing, 13(4), doi:10.1117/1.JRS.13.044509

WEF. (2016). The new plastics economy: Rethinking the future of plastics. Retrieved from https://www.weforum.org/reports/the-new-plastics-economy-rethinking-the-future-of-plastics

Xu, J., Wang, H., Cui, C., Zhao, B., & Li, B. (2020). Oil spill monitoring of shipborne radar image features using SVM and local adaptive threshold. Algorithms, 13, 69. doi:10.3390/a13030069

Zeng, K., & Wang, Y. A. (2020). Deep convolutional neural network for oil spill detection from Spaceborne SAR images. Remote Sensing, 12(6), 1015. doi:10.3390/rs12061015

Zhang, B., Matchinski, E. J., Chen, B., Ye, X., Jing, L., & Lee, K. (2019). Marine oil spills: Oil pollution, sources and effects. In Sheppard, C. (Ed.). World Seas: An Environmental Evaluation (pp. 391-406). 2nd ed. Elsevier. doi.org/10.1016/B978-0-12-805052-1.00024-3

Zhu, X. (2018). Monitoring environmental conditions near underwater datacenters using Deep Learning. Microsoft Azure. Retrieved from https://azure.microsoft.com/en-in/blog/monitoring-environmental-conditions-near-underwater-datacenters-using-deep-learning

Downloads

Published

2021-02-08