Exploring structured scripting cartographic technique of GMT for ocean seafloor modeling: A case of the East Indian Ocean

Authors

  • Polina Lemenkova Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, Department of Natural Disasters, Anthropogenic Hazards and Seismicity of the Earth, Laboratory of Regional Geophysics and Natural Disasters, Moscow, Russia

DOI:

https://doi.org/10.33175/mtr.2021.248158

Keywords:

Ninety East Ridge, Indian Ocean, GMT, Cartography, Geophysics, Topography

Abstract

This paper examines spatial variations in the geomorphology of the Ninety East Ridge (NER), located in the Indian Ocean. The NER is an extraordinary long linear bathymetric feature with topography reflecting complex geophysical setting and geologic evolution. The research is based on a compilation of high-resolution bathymetric, geological, and gravity datasets clipped for the study area extent  (65° -  107°E, 35°S - 21°N): General Bathymetric Chart of the Oceans (GEBCO), Earth Gravitational Model (EGM2008, EGM96). The submarine geomorphology of the NER was modeled by digitized cross-sectional profiles using Generic Mapping Tools (GMT). The availability of the method is explained by 1) the free datasets; 2) the open source GMT toolset; 3) the available tutorials of the GMT and the codes explained in this work. Three segments of the NER were selected, digitized, and modeled: 1) northern 89°E, 7°S to 90°E, 7°N; 2) central 88.4°E, 14.7°S to 88.8°E, 8.2°S; 3) southern 87.9°E, 17°S to 87.5°E, 27°S. Measured depths were visualized in graphs, compared, and statistically analyzed by the histograms. The northern segment has a steepness of 21.3° at the western slopes, and 14.5° at the eastern slope. The slopes on the eastern flank have dominant SE orientation. The central segment has a bell-shaped form, with the highest steepness comparing to the northern and southern segments. The eastern flank has a steepness of 49.5°. A local depression at a distance of 50 km off from the axis (90°E) continues parallel to the NER, with the shape of the narrow minor trench. The western slope has a steepness of 57.6°, decreasing to 15.6°. The southern segment has a dome-like shape form. Compared to the northern and central segments, it has a less pronounced ridge crest, with a steepness of 24.9° on the west. The eastern flank has a steepness of 36.8° until 70 km, gradually becoming steeper at 44.23°. A local minor trench structure can be seen on its eastern flank (100 km off the axis). This corresponds to the very narrow long topographic depressions stretching parallel to this segment of the NER at 90.5°E. The study contributes to regional geographic studies of Indian Ocean geomorphology and cartographic presentation of GMT functionality for marine research and oceanographic studies.

References

Aderhold, K., & Abercrombie, R. E. (2016). Seismotectonics of a diffuse plate boundary: Observations off the Sumatra-Andaman trench. Journal of Geophysical Research: Solid Earth, 121, 3462-3478. doi:10.1002/2015JB012721

Altenbernd, T., Jokat, W., & Geissler, W. (2020). The bent prolongation of the 85°E Ridge south of 5°N - Fact or fiction? Tectonophysics, 785, 228457. doi:10.1016/j.tecto.2020.228457

Anand, S. P., Rajaram, M., Majumdar, T. J., & Bhattacharyya, R. (2009). Structure and tectonics of 85°E Ridge from analysis of Geopotential data. Tectonophysics, 478(1-2), 100-110. doi:10.1016/j.tecto.2008.09.036

Andersen, O., & Knudsen, P. (1998). Global marine gravity field from the ERS-1 and GEOSAT geodetic mission altimetry. Journal of Geophysical Research, 103, 8129-8137. doi:10.1029/EO068i002p00017

Barzaghi, R., Migliaccio, F., Reguzzoni, M., & Albertella, A. (2015). The Earth gravity field in the time of satellites. Rendiconti Lincei. Scienze Fisiche e Naturali, 26, 13-23. doi:10.1007/s12210-015-0382-9

Balmino, G., Moynot, B., Sarrailh, M., & Valès, N. (1987). Free air gravity anomalies over the oceans from Seasat and Geos 3 altimeter data. Eos, Transactions American Geophysical Union 68(2), 17-19. doi:10.1029/EO068i002p00017

Balmino, G. (2003). Gravity Field Recovery from GRACE: Unique Aspects of the High Precision Inter-Satellite Data and Analysis Methods. In Beutler, G., Drinkwater, M. R., Rummel R., Von Steiger, R. (Eds). Earth Gravity Field from Space: From Sensors to Earth Sciences. Space Sciences Series of ISSI, 17. Springer, Dordrecht. doi:10.1007/978-94-017-1333-7_5

Bastia, R., Radhakrishna, M., Das, S., Kale, A. S., & Catuneanu, O. (2010). Delineation of the 85°E ridge and its structure in the Mahanadi Offshore Basin, Eastern Continental Margin of India (ECMI), from seismic reflection imaging. Marine and Petroleum Geology, 27(9), 1841-1848.

Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3), 1027. doi:10.1029/2001GC000252

Bowin, C. (1973). Origin of the Ninetyeast Ridge from studies near the equator. Journal of Geophysical Research, 78, 6029-6043. doi:10.1029/JB078i026p06029

Cande, S. C., Patriat, P., & Dyment, J. (2010). Motion between the Indian, Antarctic and African plates in the early Cenozoic. Geophysical Journal International, 183(1), 127-149. doi:10.1111/j.1365-246X.2010.04737.x

Carpenter, G., & Ewing, J. (1973). Crustal deformation in the Wharton Basin. Journal of Geophysical Research, 78(5), 846-850. doi:10.1029/JB078i005p00846

Chang, K. T. (1982). Multi-component quantitative mapping. The Cartographic Journal 19(2), 95-103. doi:10.1179/caj.1982.19.2.95

Choudhuri, M., Nemèok, M., Stuart, C., Welker, C., Sinha, S. T., & Bird, D. (2014). 85°E Ridge, India: Constraints on its development and architecture. Journal of the Geological Society of India, 84, 513-530. doi:10.1007/s12594-014-0160-9

Cochran, J. R., & Sempéré, J. C. (1997). The Southeast Indian Ridge between 88 E and 118 E: Gravity anomalies and crustal accretion at intermediate spreading rates. Journal of Geophysical Research: Solid Earth, 102(B7), 15463-15487. doi:10.1029/97JB00511

Coffin, M. F., Pringle, M. S., Duncan, R. A., Gladczenko, T. P., Storey, M., Müller, R. D., & Gahagan, L. A. (2002). Kerguelen Hotspot Magma output since 130 Ma. Journal of Petrology, 43(7) 1121-1137. doi:10.1093/petrology/43.7.1121

Curray, J. R., Emmel, F. J., Moore, D. G. & Raitt, R. W. (1982). Structure, Tectonics, and Geological History of the Northeastern Indian Ocean. In Nairn, A. E. M., & Stehli, F. G. (Eds). The Ocean Basins and Margins. Springer, Boston. doi:10.1007/978-1-4615-8038-6_9

Curray, J. R. (2005). Tectonics and history of the Andaman Sea region. Journal of Asian Earth Sciences, 25, 187-232. doi:10.1016/j.jseaes.2004.09.001

Deng, M., Liu, G., & Hu, Y. (2013). Materialization of a comprehensive digital city with CityMaker and ArcGIS. In Proceedings of the IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing (pp. 1424-1428). Beijing. doi:10.1109/GreenCom-iThings-CPSCom.2013.249

Duncan, R. A. (1978). Geochronology of basalts from the Ninetyeast ridge and continental dispersion in the eastern Indian Ocean. Journal of Volcanology and Geothermal Research, 4(3-4), 283-305. doi:10.1016/0377-0273(78)90018-5

Fleet, A. J., & McKelvey, B. C. (1978). Eocene explosive submarine volcanism, Ninetyeast Ridge, Indian Ocean. Elsevier Oceanography Series, 21, 73-97. doi:10.1016/0025-3227(78)90047-6

Frey, F. A., Jones, W. B., Davis, H., & Wein, D. (1991). Geochemical and petrological data for basalts from sites 756, 757 and 758: Implications for the origin and evolution of Ninetyeast Ridge. Proceedings of the Ocean Drilling Program Scientific Results, 121, 611-659. doi:10.2973/odp.proc.sr.121.163.1991

Frey, F. A., Pringle, M., Meleney, P., Huang, S., & Piotrowski, A. (2011). Diverse mantle sources for Ninetyeast Ridge magmatism: Geochemical constraints from basaltic glasses. Earth and Planetary Science Letters, 303(3-4), 215-224. doi:10.1016/j.epsl.2010.12.051

Frey, F. A., Silva, I. G. N., Huang, S., Pringle, M. S., Meleney, P. R. & Weis, D. (2015). Depleted components in the source of hotspot magmas: Evidence from the Ninetyeast Ridge (Kerguelen). Earth and Planetary Science Letters, 426, 293-304. doi:10.1016/j.epsl.2015.06.005

Gahalaut, V. K., Subrahmanyam, C., Kundu, B., Catherine, J. K., & Ambikapathy, A. (2010). Slow rupture in Andaman during 2004 Sumatra-Andaman earthquake: A probable consequence of subduction of 90°E ridge. Geophysical Journal International, 180(3), 1181-1186. doi:10.1111/j.1365-246X.2009.04449.x

Gauger, S., Kuhn, G., Gohl, K., Feigl, T., Lemenkova, P., & Hillenbrand, C. (2007). Swath-bathymetric mapping. Reports on Polar and Marine Research, 557, 38-45. doi:10.6084/m9.figshare.7439231

GEBCO Compilation Group. (2020). GEBCO 2020 Grid. doi:10.5285/a29c5465-b138-234d-e053-6c86abc040b9

GDAL/OGR Contributors. (2020). GDAL/OGR geospatial data abstraction software library. Open Source Geospatial Foundation. Retrieved from https://gdal.org

Gille, S. T., Yale, M. M., & Sandwell, D. T. (2000). Global correlation of mesoscale ocean variability with seafloor roughness from satellite altimetry. Geophysical Research Letters, 27(9), 1251-1254. doi:10.1029/1999GL007003

Gohl, K., Eagles, G., Udintsev, G., Larter, R. D., Uenzelmann-Neben, G., Schenke, H. W., Lemenkova, P., Grobys, J., Parsiegla, N., Schlueter, P., Deen, T., Kuhn, G., & Hillenbrand, C. D. (2006a). Tectonic and sedimentary processes of the West Antarctic margin of the Amundsen Sea embayment and Pine Island Bay. In Proceedings of the 2nd SCAR Open Science Meeting. Hobart, Australia. doi:10.6084/m9.figshare.7435484

Gohl, K., Uenzelmann-Neben, G., Eagles, G., Fahl, A., Feigl, T., Grobys, J., Just, J., Leinweber, V., Lensch, N., Mayr, C., Parsiegla, N., Rackebrandt, N., Schlüter, P., Suckro, S., Zimmermann, K., Gauger, S., Bohlmann, H., Netzeband, G., & Lemenkova, P. (2006b). Crustal and sedimentary structures and geodynamic evolution of the West Antarctic Continental Margin and Pine Island Bay (pp. 11-12). Expeditionsprogramm Nr. 75 ANT XXIII/4 ANT XXIII/5, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research. doi:10.13140/RG.2.2.16473.36961

Grevemeyer, I., & Flueh, E. R. (2000). Crustal underplating and its implications for subsidence and state of isostasy along the Ninetyeast Ridge hotspot trail. Geophysical Journal International, 142(2), 643-649. doi:10.1046/j.1365-246x.2000.00154.x

Grevemeyer, I., Flueh, E.R., Reichert, C., Bialas, J., Klaschen, D. & Kopp, C. (2001). Crustal architecture and deep structure of the Ninetyeast Ridge hotspot trail from active-source ocean bottom seismology. Geophysical Journal International, 144, 414-431. doi:10.1046/j.0956-540X.2000.01334.x

Gupta, R. P., & Sen, A. K. (1988). Imprints of the Ninety-East Ridge in the Shillong Plateau, Indian Shield. Tectonophysics, 154(3-4), 335-341. doi:10.1016/0040-1951(88)90111-4

Hédervari, P. (1982). A possible submarine volcano near the central part of Ninety-East Ridge, Indian ocean. Journal of Volcanology and Geothermal Research, 13(3-4), 199-211. doi:10.1016/0377-0273(82)90050-6

Hekinian, R. (1974). Petrology of the Ninety East Ridge (Indian Ocean) compared to other aseismic ridges. Contributions to Mineralogy and Petrology, 43, 125-147. doi:10.1007/BF00572715

Howland, M., Liss, B., Levy, T., & Najjar, M. (2020). Integrating digital datasets into public engagement through ArcGIS StoryMaps. Advances in Archaeological Practice, 8(4), 351-360. doi:10.1017/aap.2020.14

IHO-IOC GEBCO. (2020). International hydrographic organization intergovernmental oceanographic commission general Bathymetric chart of the Ocean Gazetteer of Undersea Feature Names. Retrieved from http://www.gebco.net/data_and_products/undersea_ feature_names

Klaučo, M., Gregorová, B., Stankov, U., Marković V., & Lemenkova, P. (2013). Determination of ecological significance based on geostatistical assessment: A case study from the Slovak Natura 2000 protected area. Open Geosciences, 5(1), 28-42. doi:10.2478/s13533-012-0120-0

Klaučo, M., Gregorová, B., Stankov, U., Marković, V., & Lemenkova, P. (2014). Landscape metrics as indicator for ecological significance: Assessment of Sitno Natura 2000 sites, Slovakia (pp. 85-90). In Proceedings of the Ecology and Environmental Protection. Minsk, Belarus. doi:10.6084/m9.figshare.7434200

Klaučo, M., Gregorová, B., Koleda, P., Stankov, U., Marković, V., & Lemenkova, P. (2017). Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal, 2(16), 449-458. doi:10.30638/eemj.2017.045

Knudsen P., Andersen, O. B., & Tscheming, C. C. (1992). Altimetric gravity anomalies in the Norwegian-Greenland Sea: Preliminary results from the ERS-135 days repeat mission. Geophysical Research Letters, 19(17), 1795-1798. doi:10.1029/92GL01698

Krishna, K. S., Neprochnov, Y. P., Rao, D. G., & Grinko, B. N. (2001). Crustal structure and tectonics of the Ninetyeast Ridge from seismic and gravity studies. Tectonics, 20(3), 416- 433. doi:10.1029/2001TC900004

Krishna, K. S. (2003). Structure and evolution of the Afanasy Nikitin seamount, buried hills and 85°E Ridge in the northeastern Indian Ocean. Earth and Planetary Science Letters, 209, 379-394. doi:10.1016/S0012-821X(03)00081-5

Krishna, K. S., Bull, J. M., Ishizuka, O., Scrutton, R. A., Jaishankar, S., & Banakar, V. K. (2014). Growth of the Afanasy Nikitin seamount and its relationship with the 85°E Ridge, northeastern Indian Ocean. Journal of Earth System Science, 123, 33-47. doi:10.1007/s12040-013-0392-x

Kumar, P., Yuan, X., Kumar, M. R., Kind, R., Li, X., & Chadha, R. K. (2007). The rapid drift of the Indian tectonic plate. Nature, 449, 894-897. doi:10.1038/nature06214

Lemenkova, P. (2020a). Variations in the bathymetry and bottom morphology of the Izu-Bonin Trench modelled by GMT. Bulletin of Geography: Physical Geography Series, 18(1), 41-60. doi:10.2478/bgeo-2020-0004

Lemenkova, P. (2020b). Applying automatic mapping processing by GMT to bathymetric and geophysical data: Cascadia subduction zone, Pacific Ocean. Journal of Environmental Geography, 13(3-4), 15-26. doi:10.2478/jengeo-2020-0008

Lemenkova, P. (2020c). Sediment thickness in the Bay of Bengal and Andaman Sea compared with topography and geophysical settings by GMT. Ovidius University Annals Series: Civil Engineering, 22, 13-22. doi:10.2478/ouacsce-2020-0002

Lemenkova, P. (2020d). Insights on the Indian Ocean tectonics and geophysics supported by GMT. Risks and Catastrophes Journal, 27(2), 67-83. doi:10.24193/RCJ2020_12

Lemenkova, P. (2020e). GEBCO gridded bathymetric datasets for mapping Japan trench geomorphology by means of GMT scripting toolset. Geodesy and Cartography, 46(3), 98-112. doi:10.3846/gac.2020.11524

Lemenkova, P. (2020f). GEBCO and ETOPO1 gridded datasets for GMT based cartographic mapping of Hikurangi, Puysegur and Hjort Trenches, New Zealand. Acta Universitatis Lodziensis. Folia Geographica Physica, 19, 7-18. doi:10.18778/1427-9711.19.01

Lemenkova, P. (2019a). Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartographical Review, 51(4), 181-194. doi:10.2478/pcr-2019-0015

Lemenkova, P. (2019b). Topographic surface modelling using raster grid datasets by GMT: example of the Kuril-Kamchatka Trench, Pacific Ocean. Reports on Geodesy and Geoinformatics, 108(1), 9-22. doi:10.2478/rgg-2019-0008

Lemenkova, P. (2019c). GMT based comparative analysis and geomorphological mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica, 14(2), 39-48. doi:10.21163/GT_2019.142.04

Lemenkova, P. (2019d). Geophysical modelling of the middle America Trench using GMT. Annals of Valahia University of Targoviste Geographical Series, 19(2), 73-94. doi:10.6084/m9.figshare.12005148

Lemenkova, P. (2019e). Automatic data processing for Visualising Yap and Palau Trenches by Generic mapping tools. Cartographic Letters, 27(2), 72-89. doi:10.6084/m9.figshare.11544048

Lemenkova, P. (2019f). Statistical analysis of the Mariana Trench Geomorphology using R Programming language. Geodesy and Cartography, 45(2), 57-84. doi:10.3846/gac.2019.3785

Lemenkova, P. (2019g). Calculating slope gradient variations in the submarine landforms by R and Python statistical libraries. MANAS Journal of Engineering, 7(2), 99-113. doi:10.6084/m9.figshare.11454768

Lemenkova, P. (2019h). AWK and GNU Octave programming languages integrated with Generic Mapping tools for geomorphological analysis. GeoScience Engineering, 65(4), 1-22. doi:10.35180/gse-2019-0020

Lemenkova, P. (2018). R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. Journal of Marine Technology and Environment, 2, 35-42. doi:10.6084/m9.figshare.7434167

Lemoine, F. G., Kenyon, S. C., Factor, J. K., Trimmer, R. G., Pavlis, N. K., Chinn, D. S., Cox, C. M., Klosko, S. M., Luthcke, S. B., Torrence, M. H., Wang, Y. M., Williamson, R. G., Pavlis, E. C., Rapp, R. H., & Olson, T. R. (1998). The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA/TP-1998-206861.

Liu, C., Sandwell, D. T., & Curray, J. R. (1982). The negative gravity field over the 85° E ridge. Journal of Geophysical Research, 87, 7673-7686. doi:10.1029/JB087iB09p07673

Liu, C.S., Curray, J.R., & McDonald, J.M. (1983). New constraints on the tectonic evolution of eastern Indian Ocean. Earth and Planetary Science Letters, 65, 331-342. doi:10.1016/0012-821X(83)90171-1

Marks, K. M., Smith, W. H. F. & Sandwell, D. T. (2010). Evolution of errors in the altimetric bathymetry model used by Google Earth and GEBCO. Marine Geophysical Researches, 31, 223-238. doi:10.1007/s11001-010-9102-0

McKenzie, D. P., & Bowin, C. (1976). The relationship between bathymetry and gravity in the Atlantic Ocean. Journal of Geophysical Research, 81, 1903-1915. doi:10.1111/j.1365-246X.1985.tb05166.x

Mukhopadhyay, M., & Krishna, M. B. R. (1995). Gravity anomalies and deep structure of the Ninetyeast Ridge north of the equator, eastern Indian Ocean: A hot spot trace model. Marine Geophysical Research, 17, 201-216. doi:10.1007/BF01203426

Neal, C. R., Sager, W. W., Sano, T., & Erba, E. (2015). The origin, evolution, and environmental impact of Oceanic Large Igneous provinces. Geological Society of America. doi:10.1130/SPE511

Nobre, I. G. S., Weis, D., Scoates, J. S., & Barling, J. (2013). The Ninetyeast ridge and its relation to the Kerguelen, Amsterdam and St. Paul Hotspots in the Indian Ocean. Journal of Petrology, 54(6), 1177-1210. doi:10.1093/petrology/egt009

Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, 117, B04406. doi:10.1029/2011JB008916

Peirce, J. W. (1978). The northward motion of India since the Late Cretaceous. Geophysical Journal International, 52(2), 277-311. doi:10.1111/j.1365-246X.1978.tb04234.x

Petroy, D. E., & Wiens, D. A. (1989). Historical seismicity and implications for diffuse plate convergence in the northeast Indian Ocean. Journal of Geophysical Research, 94, 12301-12319. doi:10.1029/JB094iB09p12301

Rao, D. G., Krishna, K. S., & Sar, D. (1997). Crustal evolution and sedimentation history of the Bay of Bengal since the Cretaceous. Journal of Geophysical Research, 102(B8), 17747- 17768. doi:10.1029/96JB01339

Ratheesh, R. T. K., & Windley, B. F. (2013). Spatial variations of effective elastic thickness over the Ninetyeast Ridge and implications for its structure and tectonic evolution. Tectonophysics, 608, 847-856. doi:10.1016/j.tecto.2013.07.034

Rajesh, S., & Majumdar, T. J. (2009). Geoid height versus topography of the Northern Ninetyeast Ridge: Implications on crustal compensation. Marine Geophysical Research 30, 251-264. doi:10.1007/s11001-010-9088-7

Royer, J. Y., & Sandwell, D. T. (1989). Evolution of the eastern Indian Ocean since the Late Cretaceous: Constraints from Geosat altimetry, Journal of Geophysical Research, 94(B10), 13755-13782. doi:10.1029/JB094iB10p13755

Royer, J. Y., Sclater, J. G. & Sandwell, D. T. (1989). A preliminary tectonic fabric chart of the Indian Ocean. Proceedings of the Indian Academy of Sciences: Earth & Planetary Sciences, 98, 7-24. doi:10.1007/BF02880373

Royer, J. Y., Peirce, J. W., & Weissel, J. K. (1991). Tectonic constraints on the hot-spot formation of Ninetyeast Ridge. Proceedings of the Ocean Drilling Program: Scientific Results, 121, 763-775. doi:10.2973/odp.proc.sr.121.122.1991

Royer, J. Y., Sclater, J. G., Sandwell, D. T., Cande, S. C., Schlich, R., Munschy, M., Dyment, J., Fisher, R. L., Müller, R. D., Coffin, M. F., Patriat, P., & Bergh, H. W. (1992). Appendix 1: Indian Ocean plate reconstructions since the Late Jurassic. In Duncan, R. A., Rea, D. K., Kidd, R. B., Rad, U. V., & Weissel, J. K. (Eds.). Synthesis of Results from Scientific Drilling in the Indian Ocean. doi:10.1029/GM070p0471

Sager, W. W., Bull, J. M., & Krishna, K. S. (2013). Active faulting on the Ninetyeast Ridge and its relation to deformation of the Indo-Australian plate. Journal of Geophysical Research, 118, 4648-4668. doi:10.1002/jgrb.50319

Sandwell, D. T., & Liu, C. S. (1985). The gravity field of topography buried by sediments. Conference Paper, NTRS. NASA, Washington Geopotential Res. Mission (GRM). Document ID: 19860003396.

Sandwell D. T. (1992). Antarctic marine gravity field from high-density satellite altimetry. Geophysical Journal International, 109, 437-448. doi:10.1111/j.1365-246X.1992.tb00106.x

Sandwell, D. T., & McKenzie, K. R. (1989). Geoid height versus topography for oceanic plateaus and swells. Journal of Geophysical Research, 94(B6), 7403-7418. doi:10.1029/JB094iB06p07403

Sandwell, D., Garcia, E., Soofi, K., Wessel, P., Chandler, M., & Smith, W. H. F. (2013). Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1. The Leading Edge, 32(8), 892. doi:10.1190/tle32080892.1

Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E., & Francis, R. (2014). New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205), 65-67. doi:10.1126/science.1258213

Sansò F., Reguzzoni M., & Barzaghi R. (2019). The earth gravity field: Basics. Geodetic Heights. Springer Geophysics. Springer. doi:10.1007/978-3-030-10454-2_3

Schenke, H. W., & Lemenkova, P. (2008). Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten, 81, 16-21. doi:10.6084/m9.figshare.7435538

Schenke, H. (2016). General Bathymetric Chart of the Oceans (GEBCO). In Harff, J., Meschede, M., Petersen, S., & Thiede, J. (Eds.). Encyclopedia of Marine Geosciences. Encyclopedia of Earth Sciences Series. Springer. doi:10.1007/978-94-007-6238-1_63

Sclater, J. G., & Fisher, R. L. (1974). Evolution of the east central Indian ocean, with emphasis on the tectonic setting of the Ninetyeast Ridge. Geological Society of America Bulletin, 85(5), 683-702. doi:10.1130/0016-7606(1974)85<683:EOTECI>2.0.CO;2

Shang, L., Hu, G., Yuan, Z., Qi, J., & Pan, J. (2020). Tectonic structure and origin of the 85°E ridge, Northeastern Indian Ocean: A review and new observations. Marine Geology & Quaternary Geology, 40(4), 1-16. doi:10.16562/j.cnki.0256-1492.2020042201

Silva, I. G. N., Weis, D., Scoates, J. S. & Barling, J. (2013). The Ninetyeast ridge and its relation to the Kerguelen, Amsterdam and St. Paul Hotspots in the Indian Ocean. Journal of Petrology, 54(6), 1177-1210. doi:10.1093/petrology/egt009

Smith, G. M., Gee, J., & Klootwijk, C. T. (1991). Magnetic petrology of basalts from Ninetyeast ridge. Proceedings of the Ocean Drilling Program, Scientific Results, 121, 525-545. doi:10.2973/odp.proc.sr.121.154.1991

Smith, W. H. F. (1993). On the accuracy of digital bathymetric data. Journal of Geophysical Research, 98(B6), 9591-9603. doi:10.1029/93JB00716

Smith, W. H. F., & Sandwell, D. T. (1997). Global seafloor topography from Satellite altimetry and ship depth soundings. Science, 277, 1956-1962. doi:10.1126/science.277.5334.1956

Smith, P. (1978). How Ninetyeast Ridge formed. Nature, 272, 752-753. doi:10.1038/272752a0

Small, C., Cochran, J. R., Sempéré, J. C., & Christie, D. (1999). The structure and segmentation of the Southeast Indian Ridge. Marine Geology, 161(1), 1-12. doi:10.1016/S0025-3227(99)00051-1

Souriau, A. (1981). The upper mantle beneath Ninetyeast Ridge and Broken Ridge, Indian Ocean, from surface waves. Geophysical Journal International, 67(2), 359-374. doi:10.1111/j.1365-246X.1981.tb02755.x

Sreejith, K. M., Unnikrishnan, P., & Radhakrishna, M. (2019). Isostasy and crustal structure of the Chagos-Laccadive Ridge, Western Indian Ocean: Geodynamic implications. Journal of Earth System Science, 128, 157. doi:10.1007/s12040-019-1161-2

Stein, S., & Okal, E. O. (1978). Seismicity and tectonics of the Ninetyeast Ridge area: Evidence for internal deformation of the Indian plate. Journal of Geophysical Research, 83, 2233-2246. doi:10.1029/JB083iB05p02233

Steinberger, B. (2016). Topography caused by mantle density variations: Observation-based estimates and models derived from tomography and lithosphere thickness. Geophysical Journal International, 205(1), 604-621. doi:10.1093/gji/ggw040

Stevens, D. E., McNeill, L. C., Henstock, T. J., Delescluse, M., Chamot-Rooke, N., & Bull, J. M. (2020). A complete structural model and kinematic history for distributed deformation in the Wharton Basin. Earth and Planetary Science Letters, 538, 116218. doi:10.1016/j.epsl.2020.116218

Stocks, T. (1960). Zur Bodengestalt des Indischen Ozeans. Bericht über den gegenwärtigen Stand der Forschung. Erdkunde, 14(3), doi:10.3112/erdkunde.1960.03.01

Subrahmanyam, C., Gireesh, R., Chand, S., Kamesh Raju, K. A., & Gopal, D. R. (2008). Geophysical characteristics of the Ninetyeast Ridge: Andaman island arc/trench convergent zone. Earth and Planetary Science Letters, 266, 29-45. doi:10.1016/j.epsl.2007.10.016

Suetova, I. A., Ushakova, L. A., & Lemenkova, P. (2005a). Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources, 4, 138-142. doi:10.6084/m9.figshare.7435535

Suetova, I., Ushakova, L., & Lemenkova, P. (2005b). Geoecological mapping of the Barents Sea using GIS. In Proceedings of the International Cartographic Conference. La Coruna, Spain. doi:10.6084/m9.figshare.7435529

Tiwari, V. M., Diament, M., & Singh, S. C. (2003). Analysis of satellite gravity and bathymetry data over Ninety‐East Ridge: Variation in the compensation mechanism and implication for emplacement process. Journal of Geophysical Research, 108(B2), 2109. doi:10.1029/2000JB000047

Tozer, B, Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., & Wessel, P. (2019). Global bathymetry and topography at 15 arc sec: SRTM15+. Earth and Space Science, 6, 1847-1864. doi:10.1029/2019EA000658

Weis, D., White, W. M., Frey, F. A., Duncan, R. A., Fisk, M. R., Dehn, J., Ludden, J., Saunders, A., & Storey, M. (1993). The influence of mantle plumes in generation of Indian Oceanic Crust. Geophysical Monograph Series, 70, 57-89. doi:10.1029/GM070p0057

Weis, D., Frey, F. A., Saunders, A., & Gibson, I. (1991). Ninetyeast Ridge (Indian Ocean): A 5,000 km record of a duple mantle plume. Geology, 19, 99-102. doi:10.1130/0091-7613(1991)019<0099:NRIOAK>2.3.CO;2

Wessel, P., & Smith, W. H. F. (1991). Free software helps map and display data. Eos Transactions of the American Geophysical Union, 72(41), 441. doi:10.1029/90EO00319

Wessel, P., & Smith, W. H. F. (1996). A global self-consistent, hierarchical, high-resolution shoreline database. Journal of Geophysical Research, 101, 8741-8743. doi:10.1029/96JB00104

Wessel, P., & Smith, W. H. F. (1998). New version of the Generic Mapping Tools released. Eos Transactions of the American Geophysical Union, 76(33), 329. doi:10.1029/98EO00426

Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. F., & Wobbe, F. (2013). Generic mapping tools: Improved version released. Eos Transactions American Geophysical Union, 94(45), 409-410. doi:10.1002/2013EO450001

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The generic mapping tools version 6. Geochemistry, Geophysics, Geosystems, 20, 5556-5564. doi:10.1029/2019GC008515

Downloads

Published

2021-02-01

How to Cite

Lemenkova, P. (2021). Exploring structured scripting cartographic technique of GMT for ocean seafloor modeling: A case of the East Indian Ocean. Maritime Technology and Research, 3(2), 162–184. https://doi.org/10.33175/mtr.2021.248158