Fluorine-free superhydrophobic characterized coatings: A mini review
DOI:
https://doi.org/10.33175/mtr.2021.251814Keywords:
Super-durable, Superhydrophobic, Fluorine-free, Maritime, Automotive, Pharmaceutical applications, Ecologically benignAbstract
The scientific fraternity and coating companies have researched and developed coatings with superhydrophobic features for a wide range of applications, varying from automotive, oceanic, pharmaceutical, and thermal and power sectors, over the preceding few years. The self-cleaning features of superhydrophobic surfaces exhibit pronounced dust repelling and lower dust adhesiveness qualities, along with incomparable water repellence for maritime, automotive, and pharmaceutical applications. The advancement of super-hydrophobic surfaces for averting the accrual of impurities on surfaces is an active space of exploration globally. A lesser hysteresis of contact angle leads to drops of water sliding effortlessly on such surfaces. The solid surfaces’ surface energy can be weakened by fixing materials of lesser surface energy on the exterior, which can be performed by the following dual methods; either by fixing materials of reduced surface energy straight onto the exterior of a substrate in the form of a coating of that material, or by fixing materials of less surface energy on the exterior of nano-architectural structures and then dropping the coating of those nanoscale materials on the exterior of the substrate. The generation of nanoscale irregularities on substrates by dropping nanostructure layers on surfaces makes it an attractive option since, usually, nanomaterials have a minimum of one dimension, ranging from 1 - 100 nm. The nanostructures’ sizes unveil exceptional physical and chemical characteristics, principally owing to their greater specific surface area to volume quotient. This review encompasses the non-fluorinated superhydrophobic coatings developed to date.
References
Aegerter, M. A., Almeida, R., Soutar, A., Tadanaga, K., Yang, H., & Watanabe, T. (2008). Coatings made by sol-gel and chemical nanotechnology. Journal of Sol-Gel Science and Technology, 47, 203-236. doi:10.1007/s10971-008-1761-9
Ball, P. (1999). Engineering Shark skin and other solutions. Nature, 400, 507-509. doi:10.1038/22883
Banerjee, I., Pangule, R. C., & Kane, R. S. (2011). Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 23(6), 690-718. doi:10.1002/adma.201001215
Bayer, I. S., Steele, A., Martorana, P. J., & Loth, E. (2010). Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions. Applied Surface Science, 257(3), 823-826. doi:10.1016/j.apsusc.2010.07.072
Bhushan, B., & Jung, Y.C. (2011). Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progress in Materials Science, 56(1), 1-108. doi:10.1016/j.pmatsci.2010.04.003
Boinovich, L. B., & Emelyanenko, A. M.. (2013). Anti-icing potential of superhydrophobic coatings. Mendeleev Communications, 23(1), 74-75. doi:10.1016/j.mencom.2013.01.002
Callow, J. A., & Callow, M. E. (2009). Advances in marine antifouling coatings and technologies (pp. 647-663). Sawston, Cambridge: Woodhead Publishing.
Cao, L., Jones, A. K., Sikka, V. K., Wu, J., & Gao, D. (2009). Anti-Icing superhydrophobic coatings. Langmuir, 25, 12444-12448. doi:10.1021/la902882b
Cassie, A. B. D., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546. doi:10.1039/tf9444000546
Chambers, L. D., Stokes, K. R., Walsh, F. C., & Wood, R. J. K. (2006). Modern approaches to marine antifouling coatings. Surface and Coatings Technology, 201(6), 3642-3652. doi:10.1016/j.surfcoat.2006.08.129
Chang, F. M., Sheng, Y. J., Chen, H., & Tsao, H. K. (2007). From superhydrophobic to superhydrophilic surfaces tuned by surfactant solutions. AIP Applied Physics Letters, 91, 094108. doi:10.1063/1.2779092
Chen, Y., Chen, S., Yu, F., Sun, W., Zhu, H., & Yin, Y. (2009). Fabrication and anti-corrosion property of superhydrophobic hybrid film on copper surface and its formation mechanism. Surface and Interface Analysis, 41, 872-877. doi:10.1002/sia.3102
Cho, E. C., Chang-Jian, C. W., Chen, H. C., Chuang, K. S., Zheng, J. H., Hsiao, Y. S., Lee, K. C., & Huang, J. H. (2017). Robust multifunctional superhydrophobic coatings with enhanced water/oil separation, self-cleaning, anti-corrosion, and anti-biological adhesion. Chemical Engineering Journal, 314, 347-357. doi:10.1016/j.cej.2016.11.145
Das, S., Kumar, S., Samal, S. K., Mohanty, S., & Nayak, S. K. (2018). A review on superhydrophobic polymer nanocoatings: Recent development and applications. Industrial & Engineering Chemistry Research, 57, 2727-2745. doi:10.1021/acs.iecr.7b04887
De Nicola, F., Castrucci, P., Scarselli, M., Nanni, F., Cacciotti, I., & De Crescenzi, M. (2015). Super-hydrophobic multi-walled carbon nanotube coatings for stainless steel. Nanotechnology, 26, 145701. doi:10.1088/0957-4484/26/14/145701
Deng, Z. Y., Wang, W., Mao, L. H., Wang, C. F., & Chen, S. (2014). Versatile superhydrophobic and photocatalytic films generated from TiO 2-SiO2@PDMS and their applications on fabrics. Journal of Materials Chemistry A, 2(12), 4178-4184. doi:10.1039/c3ta14942k
Ebert, D., & Bhushan, B. (2012). Transparent, superhydrophobic, and wear-resistant coatings on glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles. Langmuir, 28, 11391-11399. doi:10.1021/la301479c
England, M. W., Urata, C., Dunderdale, G. J., & Hozumi, A. (2016). Anti-fogging/Self-healing properties of clay-containing transparent nanocomposite thin films. ACS Applied Materials & Interfaces, 8(7), 4318-4322. doi:10.1021/acsami.5b11961
Feng, J., Tuominen, M. T., & Rothstein, J. P. (2011). Hierarchical superhydrophobic surfaces fabricated by dual-scale electron-beam-lithography with well-ordered secondary nanostructures. Advanced Functional Materials, 21(19), 3715-3722. doi:10.1002/adfm.201100665
Gan, W. Y., Lam, S. W., Chiang, K., Amal, R., Zhao, H., & Brungs, M. P. (2007). Novel TiO2 thin film with non-UV activated superwetting and antifogging behaviours. Journal of Materials Chemistry, 17(10), 952-954. doi:10.1039/b618280a
Ganesh, V. A., Raut, H. K., Nair, A. S., & Ramakrishna, S. (2011). A review on self-cleaning coatings. Journal of Materials Chemistry, 21, 16304-16322. doi:10.1039/c1jm12523k
Gore, P. M., & Kandasubramanian, B. (2018). Heterogeneous wettable cotton based superhydrophobic Janus biofabric engineered with PLA/functionalized-organoclay microfibers for efficient oil-water separation. Journal of Materials Chemistry A, 6, 7457-7479. doi:10.1039/C7TA11260B
Gore, P. M., Naebe, M., Wang, X., & Kandasubramanian, B. (2020). Silk fibres exhibiting biodegradability superhydrophobicity for recovery of petroleum oils from oily wastewater. Journal of Hazardous Materials, 389, 121823. doi:10.1016/j.jhazmat.2019.121823
Holtzinger, C., Niparte, B., Wächter, S., Berthomé, G., Riassetto, D., & Langlet, M. (2013). Superhydrophobic TiO2 coatings formed through a non-fluorinated wet chemistry route. Surface Science, 617, 141-148. doi:10.1016/j.susc.2013.07.002
Hooda, A., Goyat, M. S., Pandey, J. K., Kumar, A., & Gupta, R. (2020). A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings. Progress in Organic Coatings, 142, 105557. doi:10.1016/j.porgcoat.2020.105557
Howarter, J. A., & Youngblood, J. P. (2007). Self-cleaning and anti-fog surfaces via stimuli-responsive polymer brushes. Advanced Materials, 19(22), 3838-3843. doi:10.1002/adma.200700156
Isimjan, T. T., Wang, T., & Rohani, S. (2012). A novel method to prepare superhydrophobic, UV resistance and anti-corrosion steel surface. Chemical Engineering Journal, 210, 182-187. doi:10.1016/j.cej.2012.08.090
Jiang, C., Zhang, Y., Wang, Q., & Wang, T. (2013). Superhydrophobic polyurethane and silica nanoparticles coating with high transparency and fluorescence. Journal of Applied Polymer Science, 129, 2959-2965. doi:10.1002/app.39024
Junaidi, M. U. M., Azaman, S. A. H., Ahmad, N. N. R., Leo, C. P., Lim, G. W., Chan, D. J. C., & Yee, H. M. (2017). Superhydrophobic coating of silica with photoluminescence properties synthesized from rice husk ash. Progress in Organic Coatings, 111, 29-37. doi:10.1016/j.porgcoat.2017.05.009
Ke, Q., Jin, Y., Jiang, P., & Yu, J. (2014). Oil/Water separation performances of superhydrophobic and superoleophilic sponges. Langmuir, 30, 13137-13142, doi:10.1021/la502521c
Latthe, S. S., Terashima, C., Nakata, K., Sakai, M., & Fujishima, A. (2014). Development of sol-gel processed semi-transparent and self-cleaning superhydrophobic coatings. Journal of Materials Chemistry A, 2, 5548-5553. doi:10.1039/C3TA15017H
Li, J., Zhao, Y., Hu, J., Shu, L., & Shi, X. (2012). Anti-icing performance of a superhydrophobic PDMS/modified nano-silica hybrid coating for insulators. Journal of Adhesion Science and Technology, 26(4-5), 665-679. doi:10.1163/016942411X574826
Li, Y., Zhang, Z., Wang, M., Men, X., & Xue, Q. (2017). Environmentally safe, substrate-independent and repairable nanoporous coatings: Large-scale preparation, high transparency and antifouling properties. Journal of Materials Chemistry A, 5, 20277-20288. doi:10.1039/c7ta05112c
Liao, C. S., Wang, C. F., Lin, H. C., Chou, H. Y., & Chang, F. C. (2009). Fabrication of patterned superhydrophobic polybenzoxazine hybrid surfaces. Langmuir, 25, 3359-3362. https://doi.org/10.1021/la900176c
Marmur, A. (2012). Hydro-hygro-oleo-omni-phobic? Terminology of wettability classification. Soft Matter, 8, 6867. doi:10.1039/c2sm25443c
Miljkovic, N., Enright, R., & Wang, E. N. (2013). Modeling and optimization of superhydrophobic condensation. Journal of Heat Transfer, 135(11), 111004. doi:10.1115/1.4024597
Mo, C., Zheng, Y., Wang, F., & Mo, Q. (2015). A simple process for fabricating organic/TiO2 super-hydrophobic and anti-corrosion coating. International Journal of Electrochemical Science, 10, 7380-7391.
Peng, C., Xing, S., Yuan, Z., Xiao, J., Wang, C., & Zeng, J. (2012). Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade. Applied Surface Science, 259, 764-768. doi:10.1016/j.apsusc.2012.07.118
Sahoo, B. N., & Kandasubramanian, B. (2014). Photoluminescent carbon soot particles derived from controlled combustion of camphor for superhydrophobic applications. RSC Advances, 4, 11331. doi:10.1039/c3ra46193a
Sahoo, B. N., & Kandasubramanian, B. (2014). Recent progress in fabrication and characterisation of hierarchical biomimetic superhydrophobic structures. RSC Advances, 4, 22053. doi:10.1039/c4ra00506f
Si, Y., & Guo, Z. (2015). Superhydrophobic nanocoatings: From materials to fabrications and to applications. Nanoscale, 7, 5922-5946. doi:10.1039/c4nr07554d
Steele, A., Bayer, I., & Loth, E. (2009). Inherently superoleophobic nanocomposite coatings by Spray Atomization. Nano Letters, 9, 501-505. doi:10.1021/nl8037272
Wang, C. F., Tzeng, F. S., Chen, H. G., & Chang, C. J. (2012). Ultraviolet-durable superhydrophobic zinc oxide-coated mesh films for surface and underwater-oil capture and transportation. Langmuir, 28, 10015-10019. doi:10.1021/la301839a
Wei, Y., Hongtao, L., & Wei, Z. (2015). Preparation of anti-corrosion superhydrophobic coatings by an Fe-based micro/nano composite electro-brush plating and blackening process. RSC Advances, 5, 103000-103012. doi:10.1039/c5ra15640h
Xiao, Z., Zhang, M., Fan, W., Qian, Y., Yang, Z., Xu, B., Kang, Z., Wang, R., & Sun, D. (2017). Highly efficient oil/water separation and trace organic contaminants removal based on superhydrophobic conjugated microporous polymer coated devices. Chemical Engineering Journal, 326, 640-646. doi:10.1016/j.cej.2017.06.023
Xue, Z., Cao, Y., Liu, N., Feng, L., & Jiang, L. (2014). Special wettable materials for oil/water separation. Journal of Materials Chemistry A, 2, 2445-2460. doi:10.1039/c3ta13397d
Yohe, S. T., Colson, Y. L., & Grinstaff, M. W. (2012). Superhydrophobic materials for tunable drug release: Using displacement of air to control delivery rates. Journal of the American Chemical Society, 134, 2016-2019. doi:10.1021/ja211148a
Zhang, H. F., Teo, M. K., & Yang, C. (2015). Superhydrophobic carbon nanotube/polydimethylsiloxane composite coatings. Materials Science and Technology, 31, 1745-1748. doi:10.1179/1743284714Y.0000000752
Zhang, J., & Seeger, S. (2011). Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Advanced Functional Materials, 21(24), 4699-4704. doi:10.1002/adfm.201101090
Zhang, J., Pu, G., & Severtson, S. J. (2010). Fabrication of zinc oxide/polydimethylsiloxane composite surfaces demonstrating oil-fouling-resistant superhydrophobicity. ACS Applied Materials & Interfaces, 2(10), 2880-2883. doi:10.1021/am100555r
Zhang, X., Zhi, D., Sun, L., Zhao, Y., Tiwari, M. K., Carmalt, C. J., Parkin, I. P., & Lu, Y. (2018). Super-durable, non-fluorinated superhydrophobic free-standing items. Journal of Materials Chemistry A, 6, 357-362. doi:10.1039/C7TA08895G
Zhang, Y., Wei, S., Liu, F., Du, Y., Liu, S., Ji, Y., Yokoi, T., Tatsumi, T., & Xiao, F. S. (2009). Superhydrophobic nanoporous polymers as efficient adsorbents for organic compounds. Nano Today, 4(2), 135-142. doi:10.1016/j.nantod.2009.02.010
Zheng, Y., Bai, H., Huang, Z., Tian, X., Nie, F. Q., Zhao, Y., Zhai, J., & Jiang, L. (2010). Directional water collection on wetted spider silk. Nature, 463, 640-643. doi:10.1038/nature08729
Zhu, X., Zhang, Z., Ge, B., Men, X., & Zhou, X. (2014). Fabrication of a superhydrophobic carbon nanotube coating with good reusability and easy repairability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 444, 252-256. doi:10.1016/j.colsurfa.2013.12.066
Downloads
Published
Issue
Section
License
Copyright: CC BY-NC-ND 4.0