Cryogenic treatment of tool steels: A brief review and a case report

Authors

  • Thee Chowwanonthapunya Faculty of International Maritime Studies, Kasetsart University, Chonburi 20230, Thailand
  • Chaiyawat Peeratatsuwan Faculty of Engineering and Architecture, Rajamangala University of Technology Isan, Nakhonratchasima 30000, Thailand
  • Manote Rithinyo Faculty of Engineering and Architecture, Rajamangala University of Technology Isan, Nakhonratchasima 30000, Thailand

DOI:

https://doi.org/10.33175/mtr.2022.253445

Keywords:

Cryogenic treatment, Hardness, Wear resistance, Marine industries, Tool steels

Abstract

Tool steels used in marine industries demand an effective approach to the enhancement of their properties. Normally, conventional heat treatment is widely used to increase the performance of tool steels. However, this method cannot fully enhance tool steel performance. On the other hand, cryogenic treatment is a supplemental process to conventional heat treatment; it can promote the conversion of retained austenite to martensite and accelerate the precipitation of fine carbides. In this paper, a systematic review of the cryogenic treatment of tool steels is presented. A wide range of useful investigations is reviewed, particularly in the details of the transformation of retained austenite to martensite and the precipitation of fine carbides. A case study of a tool steel subjected to conventional heat treatment, conventional cold treatment, and deep cryogenic treatment is also given and discussed in order to give an insight in the cryogenic treatment of tool steels.

References

Ahmad, N. A., Kamdi, Z., & Mohd Tobi, A. L. (2018). Wear and corrosion behavior of tungsten carbide-based coatings with different metallic binder. International Journal of Integrated Engineering, 10(4), 119-125. http://dx.doi.org/10.30880/ijie.2018.10.04.020

Akhbarizadeh, A., Golozar, M. A., Shafeie, A., & Kholghy, M. (2009). Effect of austenizing time on wear behavior of D6 tool steel after deep cryogenic treatment. Journal of Iron and Steel Research International, 16(6), 29-32. https://doi.org/10.1016/S1006-706X(10)60023-4

Baldissera, P., & Delprete, C. (2008). Deep cryogenic treatment: A bibliographic review. The Open Mechanical Engineering Journal, 2(1), 1-11. http://dx.doi.org/10.2174/1874155X00802010001

Barron, R. F. (1982). Cryogenic treatment of metals to improve wear resistance. Cryogenics, 22(8), 409-413. https://doi.org/10.1016/0011-2275(82)90085-6

Bensely, A, Prabhakaran A., Lal, D. M., & Nagarajan, G. (2005). Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment. Cryogenics, 45(12), 747-754. https://doi.org/10.1016/j.cryogenics.2005.10.004

Bensely, A., Senthilkumar, D., Harish, S., & Mohan, D. L. (2011). Cryogenic treatment of gear steel. Gear Solutions, 5, 36-51.

Carlson, E. A. (1990). Cold treating and cryogenic treatment of steel in ASM Handbook (pp. 203-206). ASM International, Ohio.

Chandler, H. (1995). Heat treater’s guide-standard practices and procedures for irons and steels (pp. 300-312). ASM international, Ohio.

Chopra, S. A., & Sargade, V. G. (2015). Metallurgy behind the cryogenic treatment of cutting tools: An overview. Materials Today: Proceedings, 2(4-5), 1814-1824. https://doi.org/10.1016/j.matpr.2015.07.119

Chowwanonthapunya, T. (2019). The monitoring of pitting corrosion in stainless steel in the simulated corrosive conditions of marine applications. Maritime Technology and Research, 1(1), 23-27. https://doi.org/10.33175/mtr.2019.146185

Chowwanonthapunya, T., & Peeratatsuwan, C. (2020). An experimental investigation on the carbide precipitation and mechanical property evolution of a cryogenically treated tool steel. Asia-Pacific Journal of Science and Technology, 12(8), 123-132.

Collins, D. N., & Dormer J. (1997). Deep cryogenic treatment of a D2 cold-work tool steel. Metal Science and Heat Treatment, 3, 71-74.

Das, D., Dutta, A. K., & Ray, K. K. (2009). Correlation of microstructure with wear behavior of deep cryogenically treated AISI D2 steel. Wear, 267(9-10), 1371-1380. http://dx.doi.org/10.1016/j.wear.2008.12.051

Das, D., Dutta, A. K., & Ray, K. K. (2010a). Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness. Material Science and Engineering A, 527(9), 2182-2193. https://doi.org/10.1016/j.msea.2009.10.070

Das, D., Dutta, A. K., & Ray, K. K. (2010b). Sub-zero treatments of AISI D2 steel: Part II. Wear behavior. Material Science and Engineering A, 527(9), 2194-2206. https://doi.org/10.1016/j.msea.2009.10.071

Diekman, F. (2013). Cold and cryogenic treatment of steel (pp. 382-386). ASM Handbook, Steel Heat Treating Fundamentals and Processes.

Dumasia, C. A., Kulkarni, V. A., & Sonar, K. (2017). A Review on the effect of cryogenic treatment on metals. International Research Journal of Engineering and Technology, 4(7), 2402-2406.

Gavriljuk, V. G., Theisen, W., Sirosh V. V., Polshin, E. V., Kortmann, A., Mogilny, G. S., Petrov Y. N., & Tarusin Y. V. (2013). Low temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment. Acta Materialia, 61(5), 1705-1715. http://dx.doi.org/10.1016/j.actamat.2012.11.045

Gill, S. S., Singh, H., Singh, R., & Singh, J. (2010). Cryoprocessing of cutting tool materials: A review. International Journal of Advanced Manufacturing Technology, 48(1), 175-192. http://dx.doi.org/10.1007/s00170-009-2263-9

Joshi, P., Singh, J., Dhiman, P., Shekhar, H., & Kumar, V. (2015). Effect of cryogenic treatment on various materials: A review. Open International Journal of Technology Innovations and Research, 14, 1-11.

Jurci, P. (2017). Sub-zero treatment of cold work tool steels: Metallurgical background and the effect on microstructure and properties. HTM Journal of Heat Treatment and Materials, 72(1), 62-68. https://doi.org/10.3139/105.110301

Jurci, P., Ptacinova, J., Sahul, M., Domankova, M., & Dlouhy, I. (2018). Metallurgical principles of microstructure formation in sub-zero treated cold-work tool steels: A review. Materials Technology, 106(1), 104-113. http://dx.doi.org/10.1051/mattech/2018022

Kalia, S. (2010). Cryogenic processing, a study of materials at low temperature. Journal of Low Temperature Physics, 158(5-6), 934-945. http://dx.doi.org/10.1007/s10909-009-0058-x

Kamody, D. J. (1999). Cryogenics process update. Advanced Materials Process, 155(6), 67-69.

Kara, F., Karabatak, M., Ayyıldız, M., & Nas, E. (2020). Effect of machinability, microstructure and hardness of deep cryogenic treatment in hard turning of AISI D2 steel with ceramic cutting. Journal of Materials Processing Technology, 9(1), 969-983. https://doi.org/10.1016/j.jmrt.2019.11.037

Meng, F., Tagashira, K., Azuma, R., & Sohma, H. (1994). Role of eta-carbide precipitations in the wear resistance improvements of Fe-12Cr-Mo-V-1.4C tool steel by cryogenic treatment. ISIJ International, 34(2), 205-210. https://doi.org/10.2355/isijinternational.34.205

Mohammed, H. R., Mohammad, S. M., Abdullah, W., Shazarel, S., Mohd, A. L., Sami, A. A., Mohamad, N. M., & Mohd, A. H. (2020). Effect of the heat treatment on mechanical and physical properties of direct recycled aluminium alloy (AA6061). International Journal of Integrated Engineering, 12(3), 82-89. https://doi.org/10.30880/ijie.2020.12.03.011

Mohan, D. L., Renganarayanan, S., & A. Kalanidhi. (2001). Effect of deep cryogenic treatment on mechanical properties of tool steels. Journal of Materials Processing Technology, 18(1-3), 350-355. https://doi.org/10.1016/S0924-0136(01)00973-6

Nanesa, H. G., Touazine H., & Jahazi, M. (2016). Influences of cryogenic process parameters on microstructure and hardness evolution of AISI D2 tool steel. The International Journal of Advanced Manufacturing Technology, 85(1-4), 881-890. https://link.springer.com/article/10.1007/s00170-015-7980-7

Niessen, F., Villa, M., & Somers, M. A. J. (2018). Martensite formation from reverted austenite at sub-zero Celsius temperature. Metallic Material Transaction A, 49, 5241-5245. https://doi.org/10.1007/s11661-018-4887-6

Orlowicz, A.W., Mróz, M., Tupaj, M., & Trytek, A. (2015). Materials used in the automotive industry. Archives of Foundry Engineering, 15(2), 75-78. https://doi.org/10.1515/afe-2015-0042

Peeratatsuwan, C., & Chowwanonthapunya, T. (2020). Study of microstructure and mechanical property degradation of SA210A1 boiler. International Journal of Integrated Engineering, 12(8), 123-132. https://doi.org/10.30880/ijie.2020.12.08.012

Podgornik, B., Paulin, I., Zajec B., Jacobson, S., & Leskovsek, V. (2016). Deep cryogenic treatment of tool steels. Journal of Materials Processing Technology, 229, 398-406. https://doi.org/10.1016/j.jmatprotec.2015.09.045

Popandopulo, N., & Zhukova, L. T. (1980). Transformation in high speed steels during cold treatment. Metal Science and Heat Treatment, 22(10), 708-710. https://doi.org/10.1007/BF00700561

Prudhvi, K., & Lakshmi, V. V. (2016). Cryogenic tool treatment. Imperial Journal of Interdisciplinary Research, 2, 1204-1211.

Reitz, W., & Pendray, J. (2001). Cryoprocessing of materials: A review of current status. Materials and Manufacturing Processes, 16(6), 829-840. https://doi.org/10.1081/AMP-100108702

Scott, H. (1920). Relation of the high temperature treatment of high-speed steel to secondary hardening and red hardness. Scientific Papers, Bureau of Standards, 16, 521-536.

Senthilkumar, D., & Rajendran, I. (2011). Influence of shallow and deep cryogenic treatment on tribological behavior of En 19 steel. Journal of Iron and Steel Research, 18(9), 53-59. https://doi.org/10.1016/S1006-706X(12)60034-X

Senthilkumar, D., & Rajendran, I. (2014). A research review on deep cryogenic treatment of steels. International Journal of Materials and Structural Integrity, 8(1-3), 169-184. http://dx.doi.org/10.1504/IJMSI.2014.064784

Singh, M. (2016). Application of steel in automotive industry. International Journal of Emerging Technology and Advanced Engineering, 6(7), 246-253.

Sonar, T., Lomte, S., & Gogte, C. (2018). Cryogenic treatment of metals: A review. Material Today: Proceedings, 5(11), 25219-25228. https://doi.org/10.1016/j.matpr.2018.10.324

Stratton, P. F. (2007). Optimizing nano-carbide precipitation in tool steels. Materials Science and Engineering A, 449-451, 809-812. https://doi.org/10.1016/j.msea.2006.01.162

Vanvlack, L. H. (1998). Elements of material science and engineering (pp. 316-320). 6th eds. Addison-Wesley Series in Metallic Material Engineering.

Zhu, Y. Z., Yin, Z. M., Zhou, Y., Lei, Q. F., & Fang, W. S. (2008). Effects of cryogenic treatment on mechanical properties and microstructure of Fe-Cr-Mo-Ni-C-Co alloy. Journal of Central South University of Technology, 15(4), 454-458. http://dx.doi.org/10.1007/s11771-008-0085-9

Zurecki, Z. (2005). Cryogenic quenching of steel. In Proceeding of the 23rd Conference on Heat Treating 2005, Pennsylvania, USA.

Downloads

Published

2022-01-01

How to Cite

Chowwanonthapunya, T. ., Peeratatsuwan, C. ., & Rithinyo, M. . (2022). Cryogenic treatment of tool steels: A brief review and a case report. Maritime Technology and Research, 4(1), 253445. https://doi.org/10.33175/mtr.2022.253445