A comparison of the retinal structure in the zebra-snout seahorse (Hippocampus barbouri Jordan & Richardson, 1908) between juveniles and adults in captivity


  • Ezra Mongkolchaichana Department of General Education, Faculty of Science and Health Technology, Navamindradhiraj University, Bangkok 10300, Thailand
  • Jes Kettratad Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
  • Kitipong Angsujinda Marine Ecology and Marine Resources Utilization Research Unit, Aquatic Resources Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
  • Sinlapachai Senarat Department of Marine Science and Environment, Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Trang 92150, Thailand
  • Pisit Poolprasert Program of Biology, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand
  • Natthawut Charoenphon Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
  • Pattanasuda Sirinupong Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
  • Supanut Pairohakul Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
  • Koraon Wongkamhaeng Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand




Eye structure, Histology, Photoreceptor cell layer, Seahorse, Juvenile, Thailand


The activity of the sensory organ in the eye structure of the teleost fish is essential as it plays an important role in regulating fish-feeding behaviours. Unfortunately, the above information of zebra-snout seahorse Hippocampus barbouri, an aquaculture species in Thailand, has not been described. In this study, the eye structure, together with the retinal structure of juvenile [5th and 20th day after birth (DAB)] and adult (35th DAB), H. barbouri reared in captivity was investigated. All DABs were carried out and histologically observed. Light microscopic level explored the external-lateral surface of eye structure of H. barbouri, which consisted of the external, middle, and inner layers, as similarly reported in other teleost species. A well-differentiated retinal and photoreceptor cell layer were observed at 35th DAB compared to that at other DABs. This feature might be adequate to support the base of the increased feeding activity of adult seahorse in captivity for further research.


Download data is not yet available.


Bejarano-Escobar, R., Blasco, M., DeGrip, W. J., Martín-Partido, G., & Francisco-Morcillo, J. (2009). Cell differentiation in the retina of an epibenthonic teleost, the tench (Tinca tinca, Linneo 1758). Experimental Eye Research, 89, 398-415. https://doi.org/10.1016/j.exer.2009.04.007

Bejarano-Escobar, R., Blasco, M., Degrip, W. J., Oyola-Velasco, J. A., Martín-Partido, G., & Francisco-Morcillo, J. (2010). Eye development and retinal differentiation in an altricial fish species, the Senegalese sole (Solea senegalensis Kaup 1858). Journal of Experimental Zoology B, 314, 580-605. https://doi.org/10.1002/jez.b.21363

Blaxter, J. H. S., & Staines, M. (1970). Pure-cone retinae and retinomotor responses in the herring. Journal of the Marine Biological Association of the United Kingdom, 50, 449-460. https://doi.org/10.1017/S0025315400004641

Boonyoung, P., Senarat, S., Kettratad, J., Poolprasert, P., Yenchum, W., & Jiraungkoorskul, W. (2015). Eye structure and chemical details of the retinal layer of juvenile queen danio Devario regina (Fowler, 1934). Kasetsart Journal (Natural Science), 49, 711-716.

Bowmaker, J. K. (1991). Evolution of photoreceptor and visual pigments (pp. 63-81). In Cronly, J. R., & Gregory, R. L. (Eds.). Evolution of the eye and visual pigments. New York: CRC Press.

Browman, H. I., Gordon, W. C., Evans, B. I., & O'Brien, W. J. (1990). Correlation between histological and behavioral measures of visual acuity in a zooplanktivorous fish, the white crappie (Pomoxis annularis). Brain Behavior and Evolution, 35, 85-97. https://doi.org/10.1159/000115858

Collin, S. (1997). Specialisations of the teleost visual system: Adaptive diversity from shallow water to dee-sea. Acta Physiology Scandinavica, 161, 5-24.

Collin, S. P., & Collin, H. B. (1999). The foveal photoreceptor mosaic in the pipefish. Corythoichthyes paxtoni (Syngnathidae, Teleostei). Histology and Histopathology, 14, 369-382. https://doi.org/10.14670/HH-14.369

Flamarique, I. N., & Harosi, F. I. (2000). Photoreceptors, visual pigments and ellipsomes in the Killifish, Fundulus heterociltus: Microspectrophotometric and histological studies. Journal of Neuroscience, 17, 403-420. https://doi.org/10.1017/s0952523800173080

Genten, F., Terwinghe, E., & Danguy, A. (2008). Atlas of Fish Histology. USA, Science Publishers Enfield.

Hawryshyn, C. W. (1991). Light-adaptation properties of the ultraviolet-sensitive cone mechanism in comparison to the other receptor mechanisms of goldfish. Visual Neuroscience, 6, 293-301. https://doi.org/10.1017/s0952523800006544

IBM Corp Released. (2017). IBM SPSS statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.

Kamnurdnin, T. (2017). Effects of food on growth and gonadal development of seahorse Hippocampus sp. (Master thesis). Chulalongkorn University, Bangkok, Thailand.

Kawanura, G. & Washiyama, N. (1989). Ontogenetic changes in behavior and sense organ morphogenesis in Largemouth Bass and Tilapia nilotica. Transactions of the American Fisheries Society, 118, 203-213. https://doi.org/10.1577/1548-8659(1989)118%3C0203:OCIBAS%3E2.3.CO;2

Kawamura, G., & Ishida, K. (1985). Changes in sense organ morphology and behaviour with growth in the flounder Paralichthys olivaceus. Nippon Suisan Gakkaishi, 51, 155-165. https://doi.org/10.2331/suisan.51.155

Kim, J. G., Park, J. Y., & Kim, C. H. (2014). Visual cells in the retina of the auchaperch Coreoperca herzi Herzenstein, 1896 (Pisces; Centropomidae) of Korea. Journal of Applied Ichthyology, 30, 172-174. https://doi.org/10.1111/jai.12311

Lee, H. R. (2013). The development of seahorse vision: Morphological and behavioural aspects. (PhD thesis). Australian National University, Canberra.

Lee, H. R., & Bumsted O'Brien, K. Y. M. (2011). Morphological and behavioral limit of visual resolution in temperate (Hippocampus abdominalis) and tropical (Hippocampus taeniopterus) seahorses. Visual Neuroscience, 28, 351-360. https://doi.org/10.1017/S0952523811000149

Mass, M. (2007). Skin colour, colour preferences and retinal structure of pot-bellied seahorse, Hippocampus abdominalis (Ph.D. thesis). University of Tasmania.

Ofelio, C., Díaz, A.O., Radaelli, G., & Planas, M. (2018). Histological development of the long-snouted seahorse Hippocampus guttulatus during ontogeny. Journal of Fish Biology, 93, 1-16. https://doi.org/10.1111/jfb.13668

Pavón‐Muñoz, T., Bejarano‐Escobar, R., Blasco, M., Martín-Partido, G., & Francisco-Morcillo, J. (2016). Retinal development in the gilthead seabream Sparus aurata. Journal of Fish Biology, 88, 492-507. https://doi.org/10.1111/jfb.12802

Perez, L. N., Lorena, J., Costa, C. M., Araujo, M. S., Frota-Lima, G. N., MatosRodrigues, G. E., Martins, R. A. P., Mattox, G. M. T., & Schneider, P. N. (2017). Eye development in the four-eyed fish Anableps anableps: Cranial and retinal adaptations to simultaneous aerial and aquatic vision. Proceedings of the Royal Society B, 284, 20170157. https://doi.org/10.1098/rspb.2017.0157

Presnell, J. K., & Schreibman, M. P. (2013). Humason's Animal Tissue Techniques (pp. 1-600). 5th eds. US, Johns Hopkins University Press.

Thomas, J. L., & Craig, W. H. (2010). Ocular dimensions and cone photoreceptor topography in adult Nile tilapia Oreochromis niloticus. Environmental Biology of Fishes, 88, 369-376. https://doi.org/10.1007/s10641-010-9652-7

Senoo, S., Kaneko, M., Cheah, S. H., & Ang, K. J. (1994). Egg development, hatching, and larval development of marble goby Oxyeleotris marmoratus under artificial rearing conditions. Fisheries Science, 60, 1-8. https://doi.org/10.2331/fishsci.60.1

Senarat, S., Kettratd, J., Yenchum, W., Poolprasert, P., & Kangwanrangsan, N. (2013). Microscopic organization of eye of stoliczkae s barb Puntius stoliczkanus (Day, 1871). Kasetsart Journal (Natural Science), 47, 733-738.

Suvarna, K. S., Layton, J. D., & Bancroft, J. D. (2013). Bancroft Bancroft's theory and practice of histological techniques (7th eds). Canada, Elsevier.

Yokoyama, S., & Yokoyama, R. (1996). Adaptive evolution of photoreceptors and visual pigments in vertebrates. Annual Review of Ecology, Evolution, and Systematics, 27, 543-567. https://doi.org/10.1146/annurev.ecolsys.27.1.543

Warrant, E. J. (2004). Vision in the dimmest habitats on earth. Journal of Comparative Physiology A, 190(10), 765-789. http://dx.doi.org/10.1007/s00359-004-0546-z

Wagner, H. J. (1990). Retinal structure of fishes (pp. 109-157). In Douglas, R. H., & Djamgoz, B. A. (Eds.). The visual system of fish. London: Chapman and Hall.

Zyznar, E. S., & Ali, M. (1975). An interpretative study of the organization of visual cells and tapetum lucidum of Stizostedion. Canadian Journal of Zoology, 53, 180-196. https://doi.org/10.1139/z75-023




How to Cite

Mongkolchaichana, E. ., Kettratad, J. ., Angsujinda, K. ., Senarat, S. ., Poolprasert, P. ., Charoenphon, N. ., Sirinupong, P. ., Pairohakul, S. ., & Wongkamhaeng, K. . (2022). A comparison of the retinal structure in the zebra-snout seahorse (Hippocampus barbouri Jordan & Richardson, 1908) between juveniles and adults in captivity. Maritime Technology and Research, 4(2), 254581. https://doi.org/10.33175/mtr.2022.254581