Situation awareness information requirement for marine engine room monitoring at future shore control centre

Authors

  • Changhun Han Centre for Seafaring and Maritime Operations, Australian Maritime College (AMC), University of Tasmania, Launceston 7250, Tasmania, Australia
  • Apsara Abeysiriwardhane Centre for Seafaring and Maritime Operations, Australian Maritime College (AMC), University of Tasmania, Launceston 7250, Tasmania, Australia
  • Rabiul Islam Centre for Seafaring and Maritime Operations, Australian Maritime College (AMC), University of Tasmania, Launceston 7250, Tasmania, Australia
  • Shuhong Chai Centre for Seafaring and Maritime Operations, Australian Maritime College (AMC), University of Tasmania, Launceston 7250, Tasmania, Australia

Keywords:

Autonomous ship; Situation awareness information requirement; Marine engine room monitoring; Shore control centre; Remote operation; Goal-directed task analysis

Abstract

Information integration for explicit comprehension can be highly challenging in a large-scale system with interconnected equipment under the influence of the environment. This presents a great challenge in acquiring and maintaining situation awareness during the transition from traditional to remote and eventually to autonomous operation. However, the maritime industry appears to approach situation awareness in a highly restricted manner that focuses on visual and navigational awareness only, resulting in no support system for engine room monitoring. This research conducted a goal-directed task analysis with thirty-one subject matter experts with an average sea experience of 9.78 years to investigate situation awareness in the engine room. As a result, the situation awareness information requirements for nine machineries and twelve systems are developed. The findings reveal that numerous perception elements and their complex combinations for higher-level awareness comprise situation awareness, and situation awareness deterioration is highly likely due to the replication or reproduction of ship sense and expanded system coverage to compensate for the lack of marine engineers in ships. This research proposes that presenting higher-level situation awareness information in consideration of schema instantiation could be a promising alternative to developing and optimising the situation awareness support system for engine room monitoring at the future shore control centre.

References

AAWA. (2016). Remote and Autonomous Ships - The next steps. Retrieved from https://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/customers/marine/ship-intel/aawa-whitepaper-210616.pdf

Abd Hamid, H., & Waterson, P. (2010). Using goal directed task analysis to identify situation awareness requirements of advanced paramedics. In V.G. Duffy (Eds.), Advances in human factors and ergonomics in healthcare (pp. 672-680). Boca Raton, USA: CRC Press. https://doi.org/10.1201/EBK1439834978

Allal, A.A., Mansouri, K., Youssfi, M., & Qbadou, M. (2018). Toward energy saving and environmental protection by implementation of autonomous ship. 2018 19th IEEE Mediterranean Electrotechnical Conference, 177-180. http://doi.org/10.1109/MELCON.2018.8379089

Bolstad, C.A., Riley, J.M., Jones, D.G., & Endsley, M.R. (2002). Using goal directed task analysis with Army brigade officer teams. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 46(3), 472-476. https://doi.org/10.1177/154193120204600354

Burns, C.M., Skraaning, G. Jr., Jamieson, G.A., Lau, N., Kwok, J., Welch, R., & Andresen, G. (2008). Evaluation of ecological interface design for nuclear process control: situation awareness effects. Human Factors 50(4), 663-679. https://doi.org/10.1518/001872008X312305

Dekker, S.W. (2015). The danger of losing situation awareness. Cognition, Technology & Work 17, 159-161. https://doi.org/10.1007/s10111-015-0320-8

Endsley, M.R. (1995a). A taxonomy of situation awareness errors. In R. Fuller, N. Johnston & N. McDonald (Eds.), Human factors in aviation operations (pp. 287-292), Aldershot, England: Ashgate Publishing Ltd.

Endsley, M.R. (1995b). Toward a theory of situation awareness in dynamic systems. Human Factors 37(1), 32-64. https://doi.org/10.1518/001872095779049543

Endsley, M.R. (2016). Designing for situation awareness: An approach to user-centered design. 2nd Ed. Bota Raton, USA: CRC press. https://doi.org/10.1201/b11371

Endsley, M.R. (2017). Direct measurement of situation awareness: Validity and use of SAGAT. In E. Salas & A.S. Dietz (Eds.), Situational awareness (pp. 129-156). Milton Park, UK: Routledge. https://doi.org/10.4324/9781315087924

Endsley, M.R., Farley, T.C., Jones, W.M., Midkiff, A.H., & Hansman, R.J. (1998). Situation awareness information requirements for commercial airline pilots. Retrieved from https://dspace.mit.edu/handle/1721.1/35929

Endsley, M.R., & Garland, D.J. (2000). Situation awareness analysis and measurement. 1st ed. Boca Raton, USA: CRC Press. https://doi.org/10.1201/b12461

Endsley, M.R., & Jones, W. (2013). Situation awareness. In J.D. Lee & A. Kirlik (Eds.), The Oxford handbook of cognitive engineering (pp. 88-108). Oxford, UK: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199757183.001.0001

Endsley, M.R., & Rodgers, M.D. (1994). Situation awareness information requirements analysis for en route air traffic control. Proceedings of the human factors and ergonomics society annual meeting 38(1), 71-75. https://doi.org/10.1177/154193129403800113

Grech, M.R., Horberry, T., & Smith, A. (2002). Human error in maritime operations: Analyses of accident reports using the Leximancer tool. Proceedings of the human factors and ergonomics society annual- meeting 46(19), 1718-1721. https://doi.org/10.1177/154193120204601906

Haffaci, K., Massicotte, M.C., & Doyon-Poulin, P. (2021). Goal-directed task analysis for situation awareness requirements during ship docking in compulsory pilotage area. Proceedings of the 21st congress of the international ergonomics association (IEA 2021), 647-654. https://doi.org/10.1007/978-3-030-74608-7_79

Helton, W.S., & Russell, P.N. (2011). Working memory load and the vigilance decrement. Experimental Brain Research 212(3), 429-437. https://doi.org/10.1007/s00221-011-2749-1

IMO. (2023). Autonomous shipping. Retrieved from https://www.imo.org/en/MediaCentre/HotTopics/Pages/Autonomous-shipping.aspx

Jones, D.G., & Endsley, M.R. (1996). Sources of situation awareness errors in aviation. Aviation, space, and environmental medicine 67(6), 507-512.

KASS. (2023). What is an Autonomous Ship?. Retrieved from http://kassproject.org/en/info/info.php

Kott, A., Wang, C., & Erbacher, R.F. (2015). Cyber defense and situational awareness. 1st Ed. Berlin, Germany: Springer. https://doi.org/10.1007/978-3-319-11391-3

Ma, R., Kaber, D.B., Jones, J.M., & Starkey, R.L. (2006). Team situation awareness in nuclear power plant process control: a literature review, task analysis and future research. Proceedings of the 5th International Topical Meeting on Nuclear Plant Instrumentation Controls, and Human Machine Interface Technology, 459-462.

MacKinnon, S.N., Man, Y., & Michael, B. (2015). D8.8 Final Report: Shore Control Centre. Retrieved from www.unmanned-ship.org/munin/wp-content/uploads/2015/09/MUNIN-D8-8-Final-Report-Shore-Control-Centre-CTH-final.pdf

Malkovsky, E., Merrifield, C., Goldberg, Y., & Danckert, J. (2012). Exploring the relationship between boredom and sustained attention. Experimental Brain Research 221(1), 59-67. https://doi.org/10.1007/s00221-012-3147-z

Mutzenich, C., Durant, S., Helman, S., & Dalton, P. (2021). Updating our understanding of situation awareness in relation to remote operators of autonomous vehicles. Cognitive research: principles and implications, 6(1), 1-17. https://doi.org/10.1186/s41235-021-00271-8

NYKLINE. (2020). NYK to Participate in Crewless Maritime Autonomous Surface Ship Trial Project. Retrieved from www.nyk.com/english/news/2020/20200615_01.html

Ottesen, A.E. (2014). Situation Awareness in Remote Operation of Autonomous Ships. Retrieved from https://maritimesafetyinnovationlab.org/wp-content/uploads/2020/10/Norwegian-University-Situation-Awareness-in-Remote-Operation-of-Autonomous-Ships-Shore-Control-Center-Guidelines-Ottesen.pdf

Patrick, J., James, N., & Ahmed, A. (2007). Awareness of control room teams. Le Travail Humain 70(1), 67-94. https://doi.org/10.3917/th.701.0067

Porathe, T., Fjortoft, K., & Bratbergsengen, I.L. (2020). Human Factors, autonomous ships and constrained coastal navigation. IOP Conference Series: Materials Science and Engineering 929(1). https://doi.org/10.1088/1757-899X/929/1/012007

Porathe, T., Prison, J., & Man, Y. (2014). Situation awareness in remote control centres for unmanned ships. Proceedings of Human Factors in Ship Design & Operation. https://doi.org/10.3940/rina.hf.2014.12

Pribyl, S.T., & Weigel, A.M. (2018). Autonomous vessels: how an emerging disruptive technology is poised to impact the maritime industry much sooner than anticipated. Journal of Robotics, Artificial Intelligence and Law 1(1), 17-25.

Randall, J.G., Beier, M.E., & Villado, A.J. (2019). Multiple routes to mind wandering: Predicting mind wandering with resource theories. Consciousness and cognition 67, 26-43. https://doi.org/10.1016/j.concog.2018.11.006

Reinerman-Jones, L.E., Hughes, N., D'Agostino, A., & Matthews, G. (2019). Human performance metrics for the nuclear domain: A tool for evaluating measures of workload, situation awareness and teamwork. International journal of industrial ergonomics 69, 217-227. https://doi.org/10.1016/j.ergon.2018.12.001

Rezaeifam, S., Ergen, E., & Günaydın, H.M. (2023). Fire emergency response systems information requirements' data model for situational awareness of responders: A goal-directed task analysis. Journal of Building Engineering 63. https://doi.org/10.1016/j.jobe.2022.105531

Riley, J. M., & Endsley, M. R. (2004). The hunt for situation awareness: Human-robot interaction in search and rescue. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 48(3), 693-697. https://doi.org/10.1177/154193120404800389

Roth, G., Schulte, A., Schmitt, F., & Brand, Y. (2020). Transparency for a Workload-Adaptive Cognitive Agent in a Manned–Unmanned Teaming Application. IEEE Transactions on Human-Machine Systems 50(3), 225-233. https://doi.org/10.1109/THMS.2019.2914667

Sanchez-Gonzalez, P.L., Díaz-Gutiérrez, D., Leo, T.J., & Núñez-Rivas, L.R. (2019). Toward digitalization of maritime transport?. Sensors 19(4), 926. https://doi.org/10.3390/s19040926

Selkowitz, A.R., Lakhmani, S.G., Larios, C.N., & Chen, J.Y. (2016). Agent transparency and the autonomous squad member. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 60(1), 1319-1323. https://doi.org/10.1177/1541931213601305

Sharma, A., Nazir, S., & Ernstsen, J. (2019). Situation awareness information requirements for maritime navigation: A goal directed task analysis. Safety Science 120, 745-752. https://doi.org/10.1016/j.ssci.2019.08.016

Shenoi, R.A., Bowker, J.A., Dzielendziak, A.S., Lidtke, A.K., Zhu, G., Cheng, F., Argyos, D., Fang, I., Gonzalez, J., Johnson, S., & Ross, K. (2015). Global Marine Technology Trends 2030. Retrieved from eprints.soton.ac.uk/id/eprint/388628

Smallwood, J., & Schooler, J.W. (2006). The restless mind. Psychological Bulletin 132(6), 946-958. https://doi.org/10.1037/0033-2909.132.6.946

Sneddon, A., Mearns, K., & Flin, R. (2006). Situation awareness and safety in offshore drill crews. Cognition, Technology & Work 8, 255-267. https://doi.org/10.1007/s10111-006-0040-1

Solberg, E., Nystad, E., & McDonald, R.(2023). Situation awareness in outage work–A study of events occurring in US nuclear power plants between 2016 and 2020. Safety Science 158(2). https://doi.org/10.1016/j.ssci.2022.105965

Stratmann, T.C., & Boll, S. (2016). Demon hunt-the role of endsley’s demons of situation awareness in maritime accidents. International Conference on Human-Centred Software Engineering. 203-212. https://doi.org/10.1007/978-3-319-44902-9_13

Sullivan, B.P., Desai, S., Sole, J., Rossi, M., Ramundo, L., & Terzi, S. (2020). Maritime 4.0–opportunities in digitalization and advanced manufacturing for vessel development. Procedia manufacturing 42, 246-253. https://doi.org/10.1016/j.promfg.2020.02.078

Thomson, D.R., Smilek, D., & Besner, D. (2014). On the asymmetric effects of mind-wandering on levels of processing at encoding and retrieval. Psychonomic Bulletin & Review 21(3), 728-733. https://doi.org/10.3758/s13423-013-0526-9

van de Merwe, K., Mallam, S., & Nazir, S. (2022). Agent Transparency, Situation Awareness, Mental Workload, and Operator Performance: A Systematic Literature Review. Human factors 66(1), 180-208. https://doi.org/10.1177/00187208221077804

von Eschenbach, W.J. (2021). Transparency and the black box problem: Why we do not trust AI. Philosophy & Technology 34(4), 1607-1622. https://doi.org/10.1007/s13347-021-00477-0

Wang, R., Wen, J., & Li, P. (2022). A SEM-based research on influencing factors of team situation awareness in nuclear power plants. Frontiers in Energy Research 10. https://doi.org/10.3389/fenrg.2022.982932

Warm, J.S., Dember, W.N., & Hancock, P.A. (2018). Vigilance and workload in automated systems. In R. Parasuraman & M. Mouloua (Eds.), Automation and human performance:theory and applications (pp. 183-200). Boca Raton, USA: CRC Press. https://doi.org/10.1201/9781315137957

Warm, J.S., Parasuraman, R., & Matthews, G. (2008). Vigilance requires hard mental work and is stressful. Human factors 50(3), 433-441. https://doi.org/10.1518/001872008X312152

Wickens, C.D. (2002). Multiple resources and performance prediction. Theoretical issues in ergonomics science 3(2), 159-177. https://doi.org/10.1080/14639220210123806

Yanco, H. A., & Drury, J. (2004). " Where am I?" Acquiring situation awareness using a remote robot platform. 2004 IEEE International Conference on Systems, Man and Cybernetics 3. 2835-2840. https://doi.org/10.1109/ICSMC.2004.1400762

Yoshida, M., Shimizu, E., Sugomori, M., & Umeda, A. (2020). Regulatory requirements on the competence of remote operator in maritime autonomous surface ship: Situation awareness, ship sense and goal-based gap analysis. Applied Sciences 10(23). https://doi.org/10.3390/app10238751

Zuo, G., Chen, J., & Dai, L. (2019). Experimental research on measurement of team situation awareness in nuclear power plants. International Conference on Applied Human Factors and Ergonomics. 199-213. https://doi.org/10.1007/978-3-030-20037-4_18

Published

2024-07-04

How to Cite

Han, C., Abeysiriwardhane, A., Islam, R., & Chai, S. (2024). Situation awareness information requirement for marine engine room monitoring at future shore control centre. Maritime Technology and Research, 7(1), Accepted Manuscript. Retrieved from https://so04.tci-thaijo.org/index.php/MTR/article/view/271105