Wave-driven process influencing aeolian sediment transport in beach dune systems: A review

Authors

  • Puteri Nurfarah Adawiyah Taslin Institute of Oceanography and Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
  • Siti Nur Hanani Zainuddin Institute of Oceanography and Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
  • Aliashim Albani Faculty of Ocean Engineering, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
  • Khairul Nizam Abdul Maulud Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
  • Mardiha Mokhtar Faculty of Civil Engineering, Universiti Tun Hussein Onn, Batu Pahat, Johor, Malaysia
  • Effi Helmy Ariffin Institute of Oceanography and Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia

DOI:

https://doi.org/10.33175/mtr.2025.276936

Keywords:

Beach equilibrium, Dune systems, Coastal landform, Sediment Transport, Beach equilibrium; Dune systems; Coastal landform; Sediment transport; Wave-driven processes

Abstract

Aeolian processes involve wind-driven emission, transport, and deposition of sand and dust, with sediment transport serving as a key source of sediment for coastal sand dunes. However, beaches today are increasingly out of equilibrium due to human activities, such as coastal development and climate change, which disrupt natural sediment dynamics and lead to localized erosion and accretion along coasts. This imbalance calls for comprehensive strategies to restore and maintain beach system stability. As predicting sediment transport rates is crucial for determining dune sediment budgets, it is essential to consider wave-driven sediment transport. This paper reviews the impact of wave-driven processes on aeolian sediment transport within beach dune systems. By examining sediment transport dynamics in specific coastal environments, this study aims to shed light on the wave-driven formation of aeolian sediment features. Following the ROSES (RepOrting standards for Systematic Evidence Syntheses) guidelines, this review includes a diverse range of studies sourced from the Scopus, Web of Science, and Dimensions databases. Thematic analysis identified three key areas: aeolian processes, the driving factors impacting aeolian transport, and methods to control wave-induced aeolian transport. The findings of this study advance understanding of the role of waves in shaping aeolian sediment dynamics, offering valuable insights for future research in this field.

------------------------------------------------------------------------------
Cite this article:

Taslin, P.N.A., Zainuddin, S.N.H., Albani, A., Maulud, K.N.A., Mokhtar, M., Ariffin, E.H. (2025). Wave-driven process influencing aeolian sediment transport in beach dune systems: A review. Maritime Technology and Research, 7(4), 276936. https://doi.org/10.33175/mtr.2025.276936

------------------------------------------------------------------------------

Highlights

  • Human-induced disturbances disrupt natural sediment dynamics, leading to erosion and accretion along coastlines.
  • The study explores the interplay between wave-driven processes and aeolian sediment transport.
  • It offers a comprehensive approach to understanding the impact of wave dynamics on aeolian sediment.
  • The research provides a detailed review of wave-driven processes influencing sediment transport in beach dune systems.
  • It emphasizes the need for further research to understand the nuanced interplay between wave dynamics and sediment transport mechanisms within coastal environments.

References

Ai, L., Liu, S., Cong, S., Zhang, H., Cao, P., Wu, K., Ye, W., Mohamed, C. A. R., & Shi, X. (2024). Spatial variability of surface sediments in the Malacca strait and its implications for sedimentary environments. Journal of Asian Earth Sciences, 259(11), 105922. https://doi.org/10.1016/j.jseaes.2023.105922

Anthony, E. J., & Aagaard, T. (2020). The lower shoreface: Morphodynamics and sediment connectivity with the upper shoreface and beach. Earth-Science Reviews, 210(8), 103334. https://doi.org/10.1016/j.earscirev.2020.103334

Araújo, R. V., Pereira, P. S., Lino, A. P., Araújo, T. M., & Gonçalves, R. M. (2021). Morphodynamic study of sandy beaches in a tropical tidal inlet using RPAS. Marine Geology, 438, 1-15. https://doi.org/10.1016/j.margeo.2021.106540

Bernardino, M., Gonçalves, M., Campos, R. M., & Guedes Soares, C. (2023). Extremes and variability of wind and waves across the oceans until the end of the 21st century. Ocean Engineering, 275(3), 114081. https://doi.org/10.1016/j.oceaneng.2023.114081

Cabral, I. S., Young, I. R., & Toffoli, A. (2022). Long-term and seasonal variability of wind and wave extremes in the arctic ocean. Frontiers in Marine Science, 9(5), 1-13. https://doi.org/10.3389/fmars.2022.802022

Castelle, B., & Masselink, G. (2023). Morphodynamics of wave-dominated coasts. Cambridge Prisms: Coastal Futures, 1(e1), 1-13.

Cavaleri, L., Fox-Kemper, B., & Hemer, M. (2012). Wind waves in the coupled climate system. Bulletin of the American Meteorological Society, 93(11), 1651-1661. https://doi.org/10.1175/BAMS-D-11-00170.1

Chowdhury, P., Behera, M. R., & Reeve, D. E. (2020). Future wave-climate driven longshore sediment transport along the Indian coast. Climatic Change, 162(2), 405-424. https://doi.org/10.1007/s10584-020-02693-7

Chozas-Fernandez, J., Peter, J., & Christian, H. (2022). Aalborg universitet predictability and variability of wave and wind wave and wind forecasting and diversified energy systems in the Danish North Sea. Department of Civil Engineering, Aalborg University.

Cohn, N., Hoonhout, B. M., Goldstein, E. B., de Vries, S., Moore, L. J., Vinent, O. D., & Ruggiero, P. (2019). Exploring marine and aeolian controls on coastal foredune growth using a coupled numerical model. Journal of Marine Science and Engineering, 7(1), 1-25. https://doi.org/10.3390/jmse7010013

Cohn, N., Ruggiero, P., García-Medina, G., Anderson, D., Serafin, K. A., & Biel, R. (2019). Environmental and morphologic controls on wave-induced dune response. Geomorphology, 329, 108-128. https://doi.org/10.1016/j.geomorph.2018.12.023

Daly, C. J., Floc’h, F., Almeida, L. P. M., Almar, R., & Jaud, M. (2021). Morphodynamic modelling of beach cusp formation: The role of wave forcing and sediment composition. Geomorphology, 389, 107798. https://doi.org/10.1016/j.geomorph.2021.107798

Davidson, S. G., Hesp, P. A., DaSilva, M., & Da Silva, G. M. (2022). Flow dynamics over a high, steep, erosional coastal dune slope. Geomorphology, 402, 108111. https://doi.org/10.1016/j.geomorph.2022.108111

Davidson-Arnott, R. G. D., & Bauer, B. O. (2021). Controls on the geomorphic response of beach-dune systems to water level rise. Journal of Great Lakes Research, 47(6), 1594-1612. https://doi.org/10.1016/j.jglr.2021.05.006

Davies, A. G., Robins, P. E., Austin, M., & Walker-Springett, G. (2023a). Exploring regional coastal sediment pathways using a coupled tide-wave-sediment dynamics model. Continental Shelf Research, 253, 1-23. https://doi.org/10.1016/j.csr.2022.104903

Davies, A. G., Robins, P. E., Austin, M., & Walker-Springett, G. (2023b). Exploring regional coastal sediment pathways using a coupled tide-wave-sediment dynamics model. Continental Shelf Research, 253, 104903. https://doi.org/10.1016/j.csr.2022.104903

de Sousa, T. A., Venancio, I. M., Valeriano, C. de M., Heilbron, M., Weitzel Dias Carneiro, M. T., Mane, M. A., Horta de Almeida, J. C., Smoak, J. M., Albuquerque, A. L. S., & Silva-Filho, E. V. (2021). Changes in sedimentary provenance and climate off the coast of Northeast Brazil since the Last Interglacial. Marine Geology, 435(2), 106454. https://doi.org/10.1016/j.margeo.2021.106454

de Vries, S., Wengrove, M., & Bosboom, J. (2020). Marine sediment transport. In Sandy Beach Morphodynamics. Elsevier. https://doi.org/10.1016/B978-0-08-102927-5.00009-6

Echevarria, E. R., Hemer, M. A., & Holbrook, N. J. (2019). Seasonal variability of the global spectral wind wave climate. Journal of Geophysical Research: Oceans, 124(4), 2924-2939. https://doi.org/10.1029/2018JC014620

Eichmanns, C., & Schüttrumpf, H. (2020). Investigating changes in aeolian sediment transport at coastal dunes and sand trapping fences: A field study on the german coast. Journal of Marine Science and Engineering, 8(12), 1-27. https://doi.org/10.3390/jmse8121012

Elliton, C., Xu, K., & Rivera-Monroy, V. H. (2020). The impact of biophysical processes on sediment transport in the Wax Lake Delta (Louisiana, USA). Water (Switzerland), 12(7), 1-22. https://doi.org/10.3390/w12072072

Ermakov, A., & Ringwood, J. (2020). Development of a new class of wave energy converter based on hydrodynamic lift forces (pp. 1-13). The National University of Ireland, Maynooth.

Fernandez-Chozas, J. (2022). Opportunity of wave energy as part of the coming Danish Energy Islands (pp. 1-3). In Proceedings of the International Conference in Ocean Energy, Spain.

Floc, F., & Sandy, H. (2021). Sandy beaches morphodynamics and sediment transport quantification. Morphodynamique des plages sableuses et quantification du transport sédimentaire Sandy beaches morphodynamics and sediment transport quantifica.

Galiforni Silva, F., Wijnberg, K. M., de Groot, A. V., & Hulscher, S. J. M. H. (2019). The effects of beach width variability on coastal dune development at decadal scales. Geomorphology, 329, 58-69. https://doi.org/10.1016/j.geomorph.2018.12.012

Galiforni-Silva, F., Wijnberg, K. M., & Hulscher, S. J. M. H. (2020). Storm-induced sediment supply to coastal dunes on sand flats. Earth Surface Dynamics, 8(2), 335-350. https://doi.org/10.5194/esurf-8-335-2020

Galiforni-Silva, F., Wijnberg, K. M., & Mulder, J. P. M. (2022). Beach-dune development prior to a shoal attachment: A case study on Texel Island (NL). Marine Geology, 453(3), 106907. https://doi.org/10.1016/j.margeo.2022.106907

Gao, J., Kennedy, D. M., & Konlechner, T. M. (2020). Coastal dune mobility over the past century: A global review. Progress in Physical Geography, 44(6), 814-836. https://doi.org/10.1177/0309133320919612

Gore, S., Cooper, J. A. G., Jackson, D. W. T., & Jarecki, L. (2019). Additionally, wave swash and backwash processes contribute to the onshore and offshore movement of sediment, further influencing beach morphology and sediment distribution. Earth Surface Processes and Landforms, 44(9), 1860-1875. https://doi.org/10.1002/esp.4604

Guerrero-Bote, V. P., Chinchilla-Rodríguez, Z., Mendoza, A., & de Moya-Anegón, F. (2020). Comparative Analysis of the Bibliographic Data Sources Dimensions and Scopus: An Approach at the Country and Institutional Levels. Frontiers in Research Metrics and Analytics, 5, 19. https://doi.org/10.3389/frma.2020.593494

Guisado-Pintado, E., & Jackson, D. W. T. (2019). Coastal impact from high-energy events and the importance of concurrent forcing parameters: The cases of storm ophelia (2017) and storm hector (2018) in NW Ireland. Frontiers in Earth Science, 7(8), 1-18. https://doi.org/10.3389/feart.2019.00190

Haddaway, N. R., Macura, B., Whaley, P., & Pullin, A. S. (2018). ROSES Reporting standards for Systematic Evidence Syntheses: Pro forma, flow-diagram and descriptive summary of the plan and conduct of environmental systematic reviews and systematic maps. Environmental Evidence, 7(1), 1-8. https://doi.org/10.1186/s13750-018-0121-7

Hallin, C., Huisman, B. J. A., Larson, M., Walstra, D. J. R., & Hanson, H. (2019). Impact of sediment supply on decadal-scale dune evolution: Analysis and modelling of the Kennemer dunes in the Netherlands. Geomorphology, 337, 94-110. https://doi.org/10.1016/j.geomorph.2019.04.003

Iskandarani, M., & Liu, P. L. F. (1991). Mass transport in three-dimensional water waves. Journal of Fluid Mechanics, 231, 417-437. https://doi.org/10.1017/S0022112091003452

Itzkin, M., Moore, L. J., Ruggiero, P., Hacker, S. D., & Biel, R. G. (2021). The relative influence of dune aspect ratio and beach width on dune erosion as a function of storm duration and surge level. Earth Surface Dynamics, 9(5), 1223-1237. https://doi.org/10.5194/esurf-9-1223-2021

Jackson, D. W. T., & Short, A. D. (2020). Introduction to beach morphodynamics. In Sandy Beach Morphodynamics. Elsevier. https://doi.org/10.1016/B978-0-08-102927-5.00001-1

Jayappa, K. S., & Deepika, B. (2018). Impacts of coastal erosion, anthropogenic activities and their management on tourism and coastal ecosystems: A study with reference to Karnataka Coast, India. Coastal Research Library, 24, 421-440. https://doi.org/10.1007/978-3-319-58304-4_21

Jayathilaka, R. M. R. M., & Fernando, M. C. S. (2019). Numerical modelling of the spatial variation of sediment transport using wave climate schematisation method: A case study of west coast of Sri Lanka. Journal of the National Science Foundation of Sri Lanka, 47(4), 421-433. https://doi.org/10.4038/jnsfsr.v47i4.9679

Kraus, S., Breier, M., & Dasí-Rodríguez, S. (2020). The art of crafting a systematic literature review in entrepreneurship research. International Entrepreneurship and Management Journal, 16(3), 1023-1042. https://doi.org/10.1007/s11365-020-00635-4

Lakku, N. K. G., & Behera, M. R. (2022). Skill and inter-model comparison of regional and global climate models in simulating wind speed over South Asian Domain. Climate, 10(6), 10060085. https://doi.org/10.3390/cli10060085

Lancaster, N. (2019). Aeolian features and processes. Geological Monitoring, 1995, 01. https://doi.org/10.1130/2009.monitoring(01)

Li, W., Li, M., Zhang, X., & Li, J. (2023). Characteristics of fluid mud in the Yangtze Estuary: Storm, tide, and slope-triggered sediment dynamics and effects. Estuarine, Coastal and Shelf Science, 281, 108194. https://doi.org/10.1016/j.ecss.2022.108194

Ling, S. Y., Junaidi, A., Mohd Harun, A., & Baba, M. (2022). Geochemical assessment of heavy metal contamination in coastal sediment cores from Usukan Beach, Kota Belud, Sabah, Malaysia. Journal of Physics: Conference Series, 2314(1), 012008. https://doi.org/10.1088/1742-6596/2314/1/012008

Liu, Y., Chen, D., & Li, S. (2018). The artificial generation of the equilibrium marine atmospheric boundary layer for the CFD simulation of offshore wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 183, 44-54. https://doi.org/10.1016/j.jweia.2018.10.008

Luijendijk, A. (2021). A novel coastal landscape model for sandy systems community base for interdisciplinary research on coastal evolution. Research in Urbanism Series, 7, 223-240. https://doi.org/10.47982/rius.7.135

Mendoza, E., Lithgow, D., Flores, P., Felix, A., Simas, T., & Silva, R. (2019). A framework to evaluate the environmental impact of OCEAN energy devices. Renewable and Sustainable Energy Reviews, 112(1), 440-449. https://doi.org/10.1016/j.rser.2019.05.060

Mohamed Shaffril, H. A., Samah, A. A., Samsuddin, S. F., & Ali, Z. (2019). Mirror-mirror on the wall, what climate change adaptation strategies are practiced by the Asian’s fishermen of all? Journal of Cleaner Production, 232, 104-117. https://doi.org/10.1016/j.jclepro.2019.05.262

Moulton, M. A. B., Hesp, P. A., Miot da Silva, G., Keane, R., & Fernandez, G. B. (2021a). Surfzone-beach-dune interactions along a variable low wave energy dissipative beach. Marine Geology, 435, 1-19. https://doi.org/10.1016/j.margeo.2021.106438

Moulton, M. A. B., Hesp, P. A., Miot da Silva, G., Keane, R., & Fernandez, G. B. (2021b). Surfzone-beach-dune interactions along a variable low wave energy dissipative beach. Marine Geology, 435(2), 106438. https://doi.org/10.1016/j.margeo.2021.106438

Nelson, B. R., Zhong, J. M. H., Zauki, N. A. M., Satyanarayana, B., & Chowdhury, A. J. K. (2019). Effects of shore sedimentation to Tachypleus gigas (Müller, 1785) spawning activity from Malaysian waters. Journal of Sustainability Science and Management, 14(1), 41-60.

Palamakumbure, L., Ratnayake, A. S., Premasiri, H. M. R., Ratnayake, N. P., Katupotha, J., Dushyantha, N., Weththasinghe, S., & Weerakoon, W. A. P. (2020). Sea-level inundation and risk assessment along the south and southwest coasts of Sri Lanka. Geoenviron Disasters, 7, 17. https://doi.org/10.1186/s40677-020-00154-y

Pardo-Pascual, J. E., Palomar-Vázquez, J. M., & Cabezas-Rabadán, C. (2022). Analysis of the morphological changes of the beaches along the segment valència-cullera (E Spain) from satellite-derived shorelines. Geographical Research Letters, 48(2), 309-324. https://doi.org/10.18172/cig.5215

Rafati, Y., Hsu, T. J., Cheng, Z., Yu, X., & Calantoni, J. (2020). Armoring and exposure effects on the wave-driven sediment transport. Continental Shelf Research, 211(8), 104291. https://doi.org/10.1016/j.csr.2020.104291

Rashidi, A. H. M., Jamal, M. H., Hassan, M. Z., Sendek, S. S. M., Sopie, S. L. M., & Hamid, M. R. A. (2021). Coastal structures as beach erosion control and sea level rise adaptation in malaysia: A review. Water (Switzerland), 13(13), 1-34. https://doi.org/10.3390/w13131741

Ratnayake, A. S., Sampei, Y., Ratnayake, N. P., & Roser, B. P. (2017). Middle to late Holocene environmental changes in the depositional system of the tropical brackish Bolgoda Lake, coastal southwest Sri Lanka. Palaeogeography, Palaeoclimatology, Palaeoecology, 465, 122-137. https://doi.org/10.1016/j.palaeo.2016.10.024

Ratnayake, N. P., Ratnayake, A. S., Keegle, P. V., Mallawa Arachchi, M. A. K. M., & Premasiri, H. M. R. (2018). An analysis of beach profile changes subsequent to the Colombo Harbor Expansion Project, Sri Lanka. Environmental Earth Sciences, 77, 24. https://doi.org/10.1007/s12665-018-7234-8

Rattharangsri, T., Ariffin, E. H., Awang, N. A., & Hongshuai, Q. (2020). Coefficient of polyurethane-bonded revetment. Maritime Technology and Research, 2(1), 19-32. https://doi.org/10.33175/mtr.2019.177366

Romagnoli, C., Sistilli, F., Cantelli, L., Aguzzi, M., De Nigris, N., Morelli, M., Gaeta, M. G., & Archetti, R. (2021). Beach monitoring and morphological response in the presence of coastal defense strategies at riccione (Italy). Journal of Marine Science and Engineering, 9(8), 851. https://doi.org/10.3390/jmse9080851

Saha, K., & Sinha, S. (2021). Grain size analysis and characterization of sedimentary process in tidal flat of Chandipur Region, East Coast of India. Marine Geodesy, 44(5), 485-503. https://doi.org/10.1080/01490419.2021.1922554

Samsuddin, S. F., Shaffril, H. A. M., & Fauzi, A. (2020). Heigh-ho, heigh-ho, to the rural libraries we go! - a systematic literature review. Library and Information Science Research, 42(1), 100997. https://doi.org/10.1016/j.lisr.2019.100997

Singh, V. K., Singh, P., Karmakar, M., Leta, J., & Mayr, P. (2021). The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics, 126(6), 5113-5142. https://doi.org/10.1007/s11192-021-03948-5

Teixeira, M., Horstman, E. M., & Wijnberg, K. M. (2023). Conceptualizing aeolian sediment transport in a cellular automata model to simulate the bio-geomorphological evolution of beach-dune systems. Journal of Marine Science and Engineering, 11(7), 11071278. https://doi.org/10.3390/jmse11071278

Ubong, G., Edak, E., & Odudu, E. (2017). Effects of wind speed and direction on ocean waves along Ibeno Atlantic Ocean. International Journal of Advanced Science and Research, 2(4), 113-118. https://www.researchgate.net/publication/351877180

Uda, T. (2022). Fundamental issues in Japan’s coastal management system for the prevention of beach erosion. Maritime Technology and Research, 4(1), 251788. https://doi.org/10.33175/mtr.2022.251788

Ülger, M., & Tanrıvermiş, Y. (2023). Prevention of the effects of coastal structures on shoreline change using numerical modeling. Ocean and Coastal Management, 243, 106752. https://doi.org/10.1016/j.ocecoaman.2023.106752

Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., & Storlazzi, C. D. (2017). Doubling of coastal flooding frequency within decades due to sea-level rise. Scientific Reports, 7(1), 1399. https://doi.org/10.1038/s41598-017-01362-7

Weerasingha, W. A. D. B., & Ratnayake, A. S. (2022). Coastal landform changes on the east coast of Sri Lanka using remote sensing and geographic information system (GIS) techniques. Remote Sensing Applications: Society and Environment, 26, 100763. https://doi.org/10.1016/j.rsase.2022.100763.

Wit, F. de, Tissier, M., & Reniers, A. (2020). The relationship between sea-swell bound wave height and wave shape. Journal of Marine Science and Engineering, 8(9), 1-26. https://doi.org/10.3390/JMSE8090643

Wu, K., Shi, X., Lou, Z., Wu, B., Li, J., Zhang, H., Cao, P., & Rahim Mohamed, C. A. (2021). Sedimentary responses to climate changes and human activities over the past 7400 years in the Western Sunda Shelf. Frontiers in Earth Science, 9(4), 631815. https://doi.org/10.3389/feart.2021.631815

Wu, X. V., Chan, Y. S., Tan, K. H. S., & Wang, W. (2018). A systematic review of online learning programs for nurse preceptors. Nurse Education Today, 60, 11-22. https://doi.org/10.1016/j.nedt.2017.09.010

Yaacob, R., Shaari, H., Sapon, N., Ahmad, M. F., Arifin, E. H., Zakariya, R., & Hussain, M. L. (2018). Annual changes of beach profile and nearshore sediment distribution off Dungun-Kemaman,Terengganu, Malaysia. Jurnal Teknologi, 80(5), 57-66. https://doi.org/10.11113/jt.v80.11196

Yang, H., Cao, J., & Hou, X. (2019). Characteristics of aeolian dune, wind regime and sand transport in Hobq Desert, China. Applied Sciences (Switzerland), 9(24), 5543. https://doi.org/10.3390/app9245543

Zhang, Z., Zhang, Y., & Pan, K. (2022). Characteristics of Aeolian sediments transported above a gobi surface. Atmospheric Chemistry and Physics. http://dx.doi.org/10.5194/acp-2022-485

Downloads

Published

2025-05-23