Artificial reefs for coastal wetland and estuary protection and coral restoration: A review

Authors

  • Suwardi Department of Ocean Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, East Java, Indonesia
  • Haryo Dwito Armono Department of Ocean Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, East Java, Indonesia
  • Dendy Satrio Department of Ocean Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, East Java, Indonesia
  • Vierda Khairene Tiffany Department of Ocean Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, East Java, Indonesia
  • Andrean Prakoso Department of Ocean Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, East Java, Indonesia
  • Frans Lukito Putro Department of Ocean Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, East Java, Indonesia
  • Muhammad Rifqi Hanif Department of Ocean Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, East Java, Indonesia
  • Ridwan Erlangga Department of Ocean Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, East Java, Indonesia
  • Dihan Muhammad Khaydar Department of Ocean Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, East Java, Indonesia
  • Ananda Kusdyansyah Karim Department of Ocean Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, East Java, Indonesia
  • Jauza Ainun Aswin Department of Ocean Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, East Java, Indonesia

DOI:

https://doi.org/10.33175/mtr.2026.281096

Keywords:

Artificial reef; Hydrodynamic; Structural stability; Interlocking strength; Coastal protection

Abstract

Artificial reefs (ARs) have emerged as a potential solution to restore aquatic ecosystems and enhance coastal protection. ARs serve as an effective tool for promoting natural species recruitment and survival. Moreover, ARs provide essential microfiches for various marine organisms, facilitating breeding and nursery, vital for sustaining fish populations and enhancing fisheries. However, comprehensive analyses suggesting adequate management policies and strategies that promote sustainable use of ARs as coastal protection and coral rehabilitation are limited. This paper aims to systematically review the literature on artificial reefs to evaluate their effectiveness in these dual roles. A systematic literature review of 121 studies reveals that hydrodynamic optimization and material selection are the most studied factors influencing AR performance. The result shows that the integration of hydrodynamic principles, structural stability, and interlocking strength is essential for maximizing the effectiveness of ARs in coastal protection and marine ecosystem rehabilitation. However, developers must also navigate various risks, including environmental damage, structural failure, and the uncertainty of long-term effectiveness. By adopting proactive measures, such as thorough environmental assessments, adaptive management strategies, and the use of durable materials and more stable structures that reduce physical damage, AR developers can mitigate these risks and enhance the sustainability of projects.

------------------------------------------------------------------------------
Cite this article:

Suwardi, Armono, H. D., Satrio, D., Tiffany, V. K., Prakoso, A., Putro, F. L., Hanif, M. R., Erlangga, R., Khaydar, D. M., Karim, A. K., & Aswin, J. A. (2026). Artificial reefs for coastal wetland and estuary protection and coral restoration: A review. Maritime Technology and Research, 8(1), 281096. https://doi.org/10.33175/mtr.2026.281096

------------------------------------------------------------------------------

Highlights

  • Applies the Benefit-Opportunity-Cost-Risk (BOCR) framework to artificial reef evaluation.
  • Assesses multiple reef alternatives for coastal protection and ecosystem restoration.
  • Identifies ecological benefit and socioeconomic opportunity as key decision priorities.
  • Reveals that high-cost, low-risk reef designs deliver optimal sustainability outcomes.
  • Provides a decision-support model for policymakers in coastal infrastructure planning.

References

Al-Horani, F. A., & Khalaf, M. A. (2013). Developing artificial reefs for the mitigation of man-made coral reef damages in the Gulf of Aqaba, Red Sea: Coral recruitment after 3.5 years of deployment. Marine Biology Research, 9(8), 749-757. https://doi.org/10.1080/17451000.2013.765582

Androulakis, D., Dounas, C., Banks, A., Magoulas, A., & Margaris, D. (2020). An assessment of computational fluid dynamics as a tool to aid the design of the HCMR-artificial-reefsTM diving oasis in the underwater biotechnological park of crete. Sustainability, 12(12), 4847. https://doi.org/10.3390/su12124847

Bahinting, S. E., Mostrales, T. P., Principe, A., & Licuanan, W. (2022). Deployment of artificial habitats alone cannot make up for the degradation of coral reefs. The Philippine Journal of Fisheries, 29(2), 217-223. https://doi.org/10.31398/tpjf/29.2.2021-0030

Bao, H., Nikolaeva, A., Xia, J., & Ma, F. (2025). Evolution trends and future prospects in artificial marine reef research: A 28-year bibliometric analysis. Sustainability, 17(1), 184. https://doi.org/10.3390/su17010184

Barros, J. J. C., Galdo, M. I. L., Guerreiro, M. J. R., & Couce, L. C. (2023). Biological and hydrodynamic aspects for the design of artificial reef modules for cephalopod molluscs in the ares-betanzos estuary. Journal of Marine Science and Engineering, 11(7), 1365. https://doi.org/10.3390/jmse11071365

Becker, L. R., Ehrenberg, A., Feldrappe, V., Kröncke, I., & Bischof, K. (2020). The role of artificial material for benthic communities: Establishing different concrete materials as hard bottom environments. Marine Environmental Research, 161, 105081. https://doi.org/10.1016/j.marenvres.2020.105081

Berman, O., Levy, N., Parnas, H., Levy, O., & Tarazi, E. (2023). Exploring new frontiers in coral nurseries: Leveraging 3D printing technology to benefit coral growth and survival. Journal of Marine Science and Engineering, 11(9), 1695. https://doi.org/10.3390/jmse11091695

Black, K., & Steinhobel, D. (2021). Utilising natural attributes of tropical islands for beach protection. Journal of Marine Science and Engineering, 9(11), 208. https://doi.org/10.3390/jmse9111208

Bracho-Villavicencio, C., Matthews-Cascon, H., & Rossi, S. (2023). Artificial reefs around the world: A review of the state of the art and a meta-analysis of its effectiveness for the restoration of marine ecosystems. Environments, 10(7), 121. https://doi.org/10.3390/environments10070121

Bracho-Villavicencio, C., Matthews-Cascon, H., García-Durán, M., Vélez, X., Lago, N., Busquier, L., & Rossi, S. (2024). Benthic colonization on new materials for marine ecosystem restoration in Porto Cesareo, Italy. Journal of Marine Science and Engineering, 12(1), 0169. https://doi.org/10.3390/jmse12010169

Broadbent, H., Grasty, S., Hardy, R., Lamont, M., Hart, K., Lembke, C., Brizzolara, J., & Murawski, S. (2019). West Florida Shelf pipeline serves as sea turtle benthic habitat based on in situ towed camera observations. Aquatic Biology, 29, 17-31. https://doi.org/10.3354/ab00722

Camba, C., Mier, J. L., Carral, L., Lamas, M. I., Álvarez, J. C., Díaz‐díaz, A. M., & Tarrío‐saavedra, J. (2021). Erosive degradation study of concrete augmented by mussel shells for marine construction. Journal of Marine Science and Engineering, 9(10), 1-20. https://doi.org/10.3390/jmse9101087

Camp, E. V., Chong, L., Collins, A. B., Abeels, H., Mille, K., Sipos, M., Hall-Scharf, B., Jackson, S., Krueger, S., & Blanco, V. (2022). An update on Florida’s Artificial Reefs: Recent deployments and trends. EDIS, 2022(2), 1-7. https://doi.org/10.32473/edis-fa242-2022

Cardenas-Rojas, D., Mendoza, E., Escudero, M., & Verduzco-Zapata, M. (2021). Assessment of the performance of an artificial reef made of modular elements through small scale experiments. Journal of Marine Science and Engineering, 9(2), 1-18. https://doi.org/10.3390/jmse9020130

Chen, X., Che, X., Zhou, Y., Tian, C., & Li, X. (2024). A numerical simulation study and effectiveness evaluation on the flow field effect of trapezoidal artificial reefs in different layouts. Journal of Marine Science and Engineering, 12(1), 0003. https://doi.org/10.3390/jmse12010003

Chong, L., Mille, K., Abeels, H., Blanco, V., & Camp, E. (2021). Artificial reefs and people: How we create them and how they affect us. EDIS, 2021(2), 6. https://doi.org/10.32473/edis-fa231-2021

Chowdhury, M. S. N., Walles, B., Sharifuzzaman, S., Shahadat Hossain, M., Ysebaert, T., & Smaal, A. C. (2019). Oyster breakwater reefs promote adjacent mudflat stability and salt marsh growth in a monsoon dominated subtropical coast. Scientific Reports, 9(1), 8549. https://doi.org/10.1038/s41598-019-44925-6

Cortés-Useche, C., Reyes-Gamboa, W., Cabrera-Pérez, J. L., Calle-Triviño, J., Cerón-Flores, A., Raigoza-Figueras, R., Yathiraj, R., & Arias-González, J. E. (2021). Capture, culture and release of postlarvae fishes: Proof-of-concept as a tool approach to support reef management. Frontiers in Marine Science, 8(9), 1-11. https://doi.org/10.3389/fmars.2021.718526

Dassanayake, D. T., & Oumeraci, H. (2012). Engineering properties of geotextile sand containers and their effect on hydraulic stability and damage development of low-crested / Submerged structures. The International Journal of Ocean and Climate Systems, 3(3), 135-150. https://doi.org/10.1260/1759-3131.3.3.135

Dickson, J., Franken, O., Watson, M. S., Monnich, B., Holthuijsen, S., Eriksson, B. K., Govers, L. L., van der Heide, T., & Bouma, T. J. (2023). Who lives in a pear tree under the sea? A first look at tree reefs as a complex natural biodegradable structure to enhance biodiversity in marine systems. Frontiers in Marine Science, 10(8), 1-14. https://doi.org/10.3389/fmars.2023.1213790

Eddy, T., Lam, V., Reygondeau, G., Cisneros‐Montemayor, A., Greer, K., Palomares, M., Bruno, J., Ota, Y., & Cheung, W. (2021). Global decline in capacity of coral reefs to provide ecosystem services. One Earth, 4(9), 1278-1285. https://doi.org/10.1016/j.oneear.2021.08.016

Escudero, M., Reguero, B. G., Mendoza, E., Secaira, F., & Silva, R. (2021). Coral reef geometry and hydrodynamics in beach erosion control in North Quintana Roo, Mexico. Frontiers in Marine Science, 8(9), 1-17. https://doi.org/10.3389/fmars.2021.684732

Fahirah, F., Fadjar, A., & Bagaskara. (2024). Risk related to heavy equipment productivity on the road construction project in Palu city. ARPN Journal of Engineering and Applied Sciences, 19(5), 287-293. https://doi.org/10.59018/032442

Folpp, H. R., Schilling, H. T., Clark, G. F., Lowry, M. B., Maslen, B., Gregson, M., & Suthers, I. M. (2020). Artificial reefs increase fish abundance in habitat‐limited estuaries. Journal of Applied Ecology, 57(9), 1752-1761. https://doi.org/10.1111/1365-2664.13666

Galdo, M. I. L., Guerreiro, M. J. R., Vigo, J. L., Rodriguez, I. A., Lorenzo, R. V., Couce, J. C. C., & Couce, L. C. (2022). Definition of an artificial reef unit through hydrodynamic and structural (CFD and FEM) models-application to the Ares-Betanzos Estuary. Journal of Marine Science and Engineering, 10(2), 0230. https://doi.org/10.3390/jmse10020230

Garg, A., & Green, S. J. (2022). An integrative method for enhancing the ecological realism of aquatic artificial habitat designs using 3D scanning, printing, moulding and casting. Frontiers in Built Environment, 8(6), 763315. https://doi.org/10.3389/fbuil.2022.763315

Ghiasian, M., Carrick, J., Bisson, C., Haus, B. K., Baker, A. C., Lirman, D., & Rhode-Barbarigos, L. (2021). Laboratory quantification of the relative contribution of staghorn coral skeletons to the total wave-energy dissipation provided by an artificial coral reef. Journal of Marine Science and Engineering, 9(9), 1007. https://doi.org/10.3390/jmse9091007

Gibson Banks, K., Curtis, J. M., Williams, J. A., Wetz, J. J., & Stunz, G. W. (2021). Designing cost-effective artificial reefs: Fine-scale movement and habitat use of red snapper around a nearshore artificial reef complex. North American Journal of Fisheries Management, 41(6), 1850-1862. https://doi.org/10.1002/nafm.10698

Gong, P., Li, J., Wang, G., Guan, C., Meng, Z., & Jia, Y. (2023). Influence of reef structure and its flow field effect on the spatial behavior of Sebastes schlegelii adults. Frontiers in Marine Science, 10(6), 1-10. https://doi.org/10.3389/fmars.2023.1185898

Hanif, M. R., & Dwito Armono, H. (2022). Analisis stabilitas artificial reefs tipe hexagonal. Rekayasa, 15(2), 192-198. https://doi.org/10.21107/rekayasa.v15i2.15246

Higgins, E., & Sobolev, K. (2021). Data-driven coral reef rehabilitation using new biomimicking, advanced materials artificial reefs. Marine Technology Society Journal, 55(3), 120-121. https://doi.org/10.4031/MTSJ.55.3.13

Hoegh‐Guldberg, O., Poloczanska, E., Skirving, W., & Dove, S. (2017). Coral reef ecosystems under climate change and ocean acidification. Frontiers in Marine Science, 4, 158. https://doi.org/10.3389/fmars.2017.00158

Huang, J., Lowe, R., Ghisalberti, M., & Hansen, J. (2024). Wave dissipation induced by flow interactions with porous artificial reefs. Coastal Engineering, 197, 104688. https://doi.org/10.1016/j.coastaleng.2024.104688

Jiang, Z., Zhang, J., Nie, Z., Guo, Z., Zhu, L., Cong, W., Chen, Y., & Liang, Z. (2020). The application of seabed silt in the preparation of artificial algal reefs. Applied Sciences (Switzerland), 10(20), 1-13. https://doi.org/10.3390/app10207279

Kallianiotis, A. A., & Batjakas, I. E. (2023). Temporal and environmental dynamics of fish stocks in the marine protected area of the artificial reef of Kitros, Pieria (Northern Greece, Mediterranean Sea). Journal of Marine Science and Engineering, 11(9), 1773. https://doi.org/10.3390/jmse11091773

Kallianiotis, A. A., Kamidis, N., Tselepides, A., & Batjakas, I. E. (2023). Spatiotemporal and environmental dynamics of abundances and diversity of Larval fish in artificial reef edge habitats of Kitros, Pieria (Northern Aegean Sea, Eastern Mediterranean). Journal of Marine Science and Engineering, 11(1), 0040. https://doi.org/10.3390/jmse11010040

Kuang, C., Ma, Y., Han, X., Pan, S., & Zhu, L. (2020). Experimental observation on beach evolution process with presence of artificial submerged sand bar and reef. Journal of Marine Science and Engineering, 8(12), 1-24. https://doi.org/10.3390/jmse8121019

Li, Y., Ren, N., Li, X., & Ou, J. (2022). Hydrodynamic analysis of a novel modular floating structure system integrated with floating artificial reefs and wave energy converters. Journal of Marine Science and Engineering, 10(8), 1091. https://doi.org/10.3390/jmse10081091

Lima, J. S., Zalmon, I. R., & Love, M. (2019). Overview and trends of ecological and socioeconomic research on artificial reefs. Marine Environmental Research, 145, 81-96. https://doi.org/10.1016/j.marenvres.2019.01.010

Mao, H., Wang, Z., Hu, C., & Wang, K. (2023). Three-dimensional analysis of the flow characteristics induced by a cubic artificial reef with diversions. Processes, 11(8), 2304. https://doi.org/10.3390/pr11082304

Margheritini, L., Møldrup, P., Jensen, R. L., Frandsen, K. M., Antonov, Y. I., Kawamoto, K., de Jonge, L. W., Vaccarella, R., Bjørgård, T. L., & Simonsen, M. E. (2021). Innovative material can mimic coral and boulder reefs properties. Frontiers in Marine Science, 8(6), 1-10. https://doi.org/10.3389/fmars.2021.652986

Muhammad Hamizan, Y., Shahbudin, S., Hadry, N. F., Mahfuzah, Y., Rafindde, R., Mohd Fikri Akmal, K., & Mohd Husaini, R. (2015). The potential of artificial live rock as subtrate for coral spat and epibenthic organisms. Jurnal Teknologi, 77(25), 25-29. https://doi.org/10.11113/jt.v77.6732

Mwaura, J. M., Murage, D., Karisa, J. F., Otwoma, L. M., & O. Said, H. (2023). Artificial reef structures and coral transplantation as potential tools for enhancing locally-managed inshore reefs: a case study from Wasini Island, Kenya. Western Indian Ocean Journal of Marine Science, 21(2), 83-94. https://doi.org/10.4314/wiojms.v21i2.8

O’Reilly, L. M., & Willerth, S. M. (2023). Evaluating the biocompatibility of ceramic materials for constructing artificial reefs. Frontiers in Marine Science, 10(1), 1-10. https://doi.org/10.3389/fmars.2023.1292584

Pan, Y., Yang, L., Xue, D., & Luo, L. (2023). Numerical simulation of hydrodynamic characteristics of layered floating reefs under tidal currents and waves. Water, 15(22), 3892. https://doi.org/10.3390/w15223892

Paxton, A. B., Peterson, C. H., Taylor, J. C., Adler, A. M., Pickering, E. A., & Silliman, B. R. (2019). Artificial reefs facilitate tropical fish at their range edge. Communications Biology, 2(1), 168. https://doi.org/10.1038/s42003-019-0398-2

Qu, Y., Hooper, T., Austen, M. C., Papathanasopoulou, E., Huang, J., & Yan, X. (2023). Development of a computable general equilibrium model based on integrated macroeconomic framework for ocean multi-use between offshore wind farms and fishing activities in Scotland. Applied Energy, 332(5), 120529. https://doi.org/10.1016/j.apenergy.2022.120529

Rahman, A. M. A., Nazri, M. N., Alias, F., Fitriadhy, A., & Mohd, M. H. (2021). Computational fluid dynamics analysis of rigs-to-reefs (R2R) jacket structures. CFD Letters, 13(1), 72-83. https://doi.org/10.37934/cfdl.13.1.7283

Ramm, L. A., Florisson, J. H., Watts, S. L., Becker, A., & Tweedley, J. R. (2021). Artificial reefs in the Anthropocene: A review of geographical and historical trends in their design, purpose, and monitoring. Bulletin of Marine Science, 97(4), 699-728. https://doi.org/10.5343/bms.2020.0046

Rouse, S., Lacey, N. C., Hayes, P., & Wilding, T. A. (2019). Benthic conservation features and species associated with subsea pipelines: Considerations for decommissioning. Frontiers in Marine Science, 6(4), 1-9. https://doi.org/10.3389/fmars.2019.00200

Schuh, E., Grilli, A. R., Groetsch, F., Grilli, S. T., Crowley, D., Ginis, I., & Stempel, P. (2023). Assessing the morphodynamic response of a New England beach-barrier system to an artificial reef. Coastal Engineering, 184(3), 104355. https://doi.org/10.1016/j.coastaleng.2023.104355

Shu, A., Rubinato, M., Qin, J., Zhu, J., Sun, T., Yang, W., Wang, M., & Zhang, Z. (2021). The hydrodynamic characteristics induced by multiple layouts of typical artificial m-type reefs with sea currents typical of liaodong bay, Bohai Sea. Journal of Marine Science and Engineering, 9(11), 1-23. https://doi.org/10.3390/jmse9111155

Shu, A., Zhang, Z., Wang, L., Sun, T., Yang, W., Zhu, J., Qin, J., & Zhu, F. (2022). Effects of typical artificial reefs on hydrodynamic characteristics and carbon sequestration potential in the offshore of Juehua Island, Bohai Sea. Frontiers in Environmental Science, 10, 979930. https://doi.org/10.3389/fenvs.2022.979930

Soares, M. O., Feitosa, C. V., Garcia, T. M., Cottens, K. F., Vinicius, B., Paiva, S. V., Duarte, O. de S., Gurjão, L. M., Silva, G. D. de V., Maia, R. C., Previatto, D. M., Carneiro, P. B. M., Cunha, E., Amâncio, A. C., Sampaio, C. L. S., Ferreira, C. E. L., Pereira, P. H. C., Rocha, L. A., Tavares, T. C. L., & Giarrizzo, T. (2022). Lionfish on the loose: Pterois invade shallow habitats in the tropical southwestern Atlantic. Frontiers in Marine Science, 9(8), 1-10. https://doi.org/10.3389/fmars.2022.956848

Suwardi, Armono, H. D., Satrio, D., Jadmiko, E., Putro, A. P. F. L., & Ananta, G. J. (2025). Analysis of the Suitability for Placing Interlocking Modular Hexareef Structures as an Environmentally Friendly Coastal Protection in the Gili Ketapang Probolinggo Marine Conservation Area. IOP Conference Series: Earth and Environmental Science, 1473(1), 012002. https://doi.org/10.1088/1755-1315/1473/1/012002

Veenland, S. (2023). Stability of artificial coral reefs in stormy weather conditions: A study on the stability of different configurations of concrete cube framework artificial coral reefs located at the North East Coast of Bali, Indonesia. Available at: https://www.coralreefcare.com/uploads/RapportFinal_SytzeVeenland.pdf

Vieira, B. F. V., Pinho, J. L. S., Barros, J. A. O., & Antunes do Carmo, J. S. (2020). Hydrodynamics and morphodynamics performance assessment of three coastal protection structures. Journal of Marine Science and Engineering, 8(3), 0175. https://doi.org/10.3390/jmse8030175

Wang, H., Wu, G., Hu, F., Tian, R., Ding, J., Chang, Y., Su, Y., & Zhao, C. (2023). Artificial reefs reduce morbidity and mortality of small cultured sea cucumbers apostichopus japonicus at high temperature. Journal of Marine Science and Engineering, 11(5), 0948. https://doi.org/10.3390/jmse11050948

Xiang, T., Bryski, E., & Farhadzadeh, A. (2024). An experimental study on wave transmission by engineered plain and enhanced oyster reefs. Ocean Engineering, 291(10), 116433. https://doi.org/10.1016/j.oceaneng.2023.116433

Xu, K., Zhuang, Y., Bin, L., Wang, C., & Tian, F. (2023). Impact assessment of climate change on compound flooding in a coastal city. Journal of Hydrology, 617, 129166. https://doi.org/10.1016/j.jhydrol.2023.129166

Xu, M., Qi, L., Zhang, L., Zhang, T., Yang, H., & Zhang, Y. (2019). Ecosystem attributes of trophic models before and after construction of artificial oyster reefs using Ecopath. Aquaculture Environment Interactions, 11, 111-127. https://doi.org/10.3354/aei00284

Yan, S., Sun, T., Yan, R., Wang, X., Liao, G., & Lei, W. (2024). Shelter Capacity of Artificial Reefs for Sea Cucumber Apostichopus japonicas Is Influenced by Water Flow and Food Resources in Laboratory Experiments. Journal of Marine Science and Engineering, 12(6), 0993. https://doi.org/10.3390/jmse12060993

Yang, M., Tang, Y., Zhao, F., & Xu, S. (2023). Numerical simulation of offshore wind power pile foundation scour with different arrangements of artificial reefs. Frontiers in Marine Science, 10(7), 1178370. https://doi.org/10.3389/fmars.2023.1178370

Yoris-Nobile, A. I., Slebi-Acevedo, C. J., Lizasoain-Arteaga, E., Indacoechea-Vega, I., Blanco-Fernandez, E., Castro-Fresno, D., Alonso-Estebanez, A., Alonso-Cañon, S., Real-Gutierrez, C., Boukhelf, F., Boutouil, M., Sebaibi, N., Hall, A., Greenhill, S., Herbert, R., Stafford, R., Reis, B., van der Linden, P., Gómez, O. B., … Lobo-Arteaga, J. (2023). Artificial reefs built by 3D printing: Systematisation in the design, material selection and fabrication. Construction and Building Materials, 362(8), 129766. https://doi.org/10.1016/j.conbuildmat.2022.129766

Zaneveld, J., Burkepile, D., Shantz, A., Pritchard, C., McMinds, R., Payet, J., Welsh, R., Correa, A., Lemoine, N., Rosales, S., Fuchs, C., Maynard, J., & Thurber, R. (2016). Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nature Communications, 7, 11833. https://doi.org/10.1038/ncomms11833

Zhang, D., Cui, Y., Zhou, H., Jin, C., Yu, X., Xu, Y., Li, Y., & Zhang, C. (2019). Microplastic pollution in water, sediment, and fish from artificial reefs around the Maan Archipelago, Shengsi, China. The Science of the Total Environment, 703, 134768. https://doi.org/10.1016/j.scitotenv.2019.134768

Zhu, P., Hao, Y., Wei, Z., Yuan, C., & Wang, S. (2022). Study on flow field characteristics of box artificial reef. Journal of Physics: Conference Series, 2271(1), 012007. https://doi.org/10.1088/1742-6596/2271/1/012007

Downloads

Published

2025-10-26