Shipbuilding materials: A bibliometric analysis of research trends
DOI:
https://doi.org/10.33175/mtr.2026.281595Keywords:
Shipbuilding materials; Naval architecture; Marine vessel materials; Bibliometric analysis; Research trendsAbstract
This study examines global research trends in shipbuilding materials using bibliometric matching and addresses the gap in the literature stemming from the lack of a comprehensive bibliometric study directly focusing on shipbuilding materials. The Scopus database was searched for studies published between 1970 and 2024; the starting year was chosen because it corresponds to the period when research on modern shipbuilding materials accelerated with advances in welding/joining processes, corrosion protection, and material testing standards. The search used the keywords “ship hull materials,” “naval architecture materials,” and “marine vehicle construction materials.” The latter two terms were defined to encompass structural and construction elements directly related to shipbuilding. Bibliometric matching identified leading countries, institutions, journals, frequently cited studies, and thematic clusters. The thematic framework is organized according to four main material groups: wood, steel, aluminum, and composites. The findings indicate a growing emphasis on composite materials, and ongoing research on improving corrosion resistance, strength, and sustainability in steel and aluminum. The results obtained provide a comprehensive overview of the subject and produce insights that can contribute to the shaping of future research agendas in marine engineering and naval architecture.
------------------------------------------------------------------------------
Cite this article:
APA Style:
Sekban, D. M., Berigel, M., & Kirma, F. (2026). Shipbuilding materials: A bibliometric analysis of research trends. Maritime Technology and Research, 8(2), 281595. https://doi.org/10.33175/mtr.2026.281595
MDPI Style:
Sekban, D. M.; Berigel, M.; Kirma, F. Shipbuilding materials: A bibliometric analysis of research trends. Marit. Technol. Res. 2026, 8, 281595. https://doi.org/10.33175/mtr.2026.281595
Vancouver Style:
Sekban DM, Berigel M, Kirma F. (2026). Shipbuilding materials: A bibliometric analysis of research trends. Marit. Technol. Res.; 8(2):281595. https://doi.org/10.33175/mtr.2026.281595
------------------------------------------------------------------------------
Highlights
- Summarizes recent studies on materials in maritime structural applications.
- Presents a 50-year bibliometric analysis of shipbuilding materials research.
- Identifies top countries, institutions, and key authors in the maritime field.
- Reveals thematic shifts and keyword trends in naval material studies.
- Maps international collaboration networks in shipbuilding materials research.
- Highlights emerging topics such as composites, corrosion, and eco-friendly design.
References
Ashby, M. F. (2011). Chapter 5 - Materials selection-The basics (pp. 97-124). In Ashby, M. F. (Ed.). Materials selection in mechanical design. 4th eds. Oxford: Butterworth-Heinemann.
Boinovich, L. B., Emelyanenko, A. M., Modestov, A. D., Domantovsky, A. G., & Emelyanenko, K. A. (2015). Synergistic effect of superhydrophobicity and oxidized layers on corrosion resistance of aluminum alloy surface textured by nanosecond laser treatment. ACS Applied Materials & Interfaces, 7(34), 19500-19508. https://doi.org/10.1021/acsami.5b06217
Bolf, D., Hadjina, M., Zamarin, A., & Matulja, T. (2021). Methodology for composite materials shrinkage definition for use in shipbuilding and marine technology. Pomorstvo, 35(2), 267-274. https://doi.org/10.31217/p.35.2.9
Bueno, J. A. (2024a). Introduction: The shipbuilding industry in the Spanish Caribbean, 1400s-1700s: Construction, maintenance, supply of materials, and financing. International Journal of Maritime History, 36(3), 379-385. https://doi.org/10.1177/08438714241264547
Bueno, J. A. (2024b). The bay of La Isabela, Dominican Republic: The first enclave for the shelter, reception, construction and maintenance of ships in the New World, 1494-1498. International Journal of Maritime History, 36(3), 386-409. https://doi.org/10.1177/08438714241261807
Chen, B. Q., Liu, K., & Xu, S. (2024). Recent advances in aluminum welding for marine structures. Journal of Marine Science and Engineering, 12(9), 1539. https://doi.org/10.3390/jmse12091539
Cristea, G. C., Deleanu, L., Chiracu, I. G., Boțan, M., Ojoc, G. G., Vasiliu, A. V., & Ceoromila, A. C. (2025). Influence of resin grade and mat on low-velocity impact on composite applicable in shipbuilding. Polymers, 17(3), 355. https://doi.org/10.3390/polym17030355
Crupi, V., Epasto, G., Napolitano, F., Palomba, G., Papa, I., & Russo, P. (2023). Green composites for maritime engineering: A review. Journal of Marine Science and Engineering, 11(3), 599. https://doi.org/10.3390/jmse11030599
Demirtas, M., & Sekban, D. M. (2021). Optimization of strength, ductility and wear resistance of low-carbon grade A shipbuilding steel by post-ECAP annealing. Metallurgical Research & Technology, 118(2), 217. https://doi.org/10.1051/metal/2021021
Djoumessi, A. , Tagne, N., Tiaya, E., Nitidem, A., Ngapgue, F., & Njeugna, E. (2025) Physical, thermal and mechanical characterization of epoxy/rafia vinifera woven composite materials: Application to the comfort of boats in tropical areas. Journal of Materials Science and Chemical Engineering, 13, 1-22. https://doi.org/10.4236/msce.2025.132001
Dolz, M., Martinez, X., Sá, D., Silva, J., & Jurado, A. (2023). Composite materials, technologies and manufacturing: Current scenario of European Union shipyards. Ships and Offshore Structures, 19(8), 1157-1172. https://doi.org/10.1080/17445302.2023.2229160
Dugan, S. A., & Utne, I. B. (2025). Analysis of the repairability of ship machinery failures. In Proceedings of the 2025 Annual Reliability and Maintainability Symposium.
Elen, M., Kumar, V., & Fifield, L. S. (2024). Feasibility of recovering and recycling polymer composites from end-of-life marine renewable energy structures: A review. Sustainability, 16(23), 10515. https://doi.org/10.3390/su162310515
Garbatov, Y., Palomba, G., & Crupi, V. (2023). Risk-based hybrid light-weight ship structural design accounting for carbon footprint. Applied Sciences, 13(6), 3583. https://doi.org/10.3390/app13063583
Guedes Soares, C., Gordo, J. M., & Teixeira, A. P. (1998). Elasto-plastic behaviour of plates subjected to heat loads. Journal of Constructional Steel Research, 45(2), 179-198. https://doi.org/10.1016/S0143-974X(97)00062-X
Gunarti, M. R., Prawoto, A., Fauzi, W. N., & Wirawan, W. (2024). Mechanical behavior of glass fiber-epoxy composite laminates for ship hull structures. Mechanical Engineering for Society and Industry, 4(2), 156-166. https://doi.org/10.31603/mesi.11589
Hassan, A., Woloszyk, K., & Krata, P. (2025). FRP-based reinforcement coatings of steel with application prospects in ships and offshore structures: a review. Ships and Offshore Structures, 20(5), 740-754. doi:10.1080/17445302.2024.2356458
Hendroprasetyo, W., & Jati Andrian, H. H. (2022). Analysis of Eddy Current Testing Detection Ability to the Varied Longitudinal Cracks on Coated Weld Metal Tee Joint of 5083 Aluminum Ship Structure. IOP Conference Series: Earth and Environmental Science, 972(1), 012041. doi:10.1088/1755-1315/972/1/012041
Hocker, F. (2022). Timber and hemp: Swedish naval stores procurement in the reign of Gustav II Adolf and its international context. Forum Navale, 79, 44-78. https://doi.org/10.63402/fn.vi79.25039
Huang, B., Jiacheng, C., Chang, L., Lu, W., & Wang, P. (2025). Analysis of vibration characteristics of lifting rigid pipe in deep-sea mining under ship movement. Marine Georesources & Geotechnology, 43(3), 356-370. https://doi.org/10.1080/1064119X.2024.2334786
Karatuğ, Ç., Arslanoğlu, Y., & Soares, C. G. (2023). Design of a decision support system to achieve condition-based maintenance in ship machinery systems. Ocean Engineering, 281, 114611. https://doi.org/10.1016/j.oceaneng.2023.114611
Karatuğ, Ç., Yasin, A., & Soares, C. G. (2023). Review of maintenance strategies for ship machinery systems. Journal of Marine Engineering & Technology, 22(5), 233-247. https://doi.org/10.1080/20464177.2023.2180831
Kim, Y. R., Sverre, S., Diogo, K., Helene, M., & Anders, H. S. (2023). Modelling of ship resistance and power consumption for the global fleet: The MariTEAM model. Ocean Engineering 281, 114758. https://doi.org/10.1016/j.oceaneng.2023.114758
Kong, X., Feng, K., Wang, P., Wan, Z., Lin, L., Zhang, N., & Li, J. (2022). Steel stocks and flows of global merchant fleets as material base of international trade from 1980 to 2050. Global Environmental Change, 73, 102493. https://doi.org/10.1016/j.gloenvcha.2022.102493
Liu, J., Qiukai, J., Xiaohu, Z., Yu, C., Yiming, Z., Xiaojun, L., & Mingming, T. (2024). Digital twin model-driven capacity evaluation and scheduling optimization for ship welding production line. Journal of Intelligent Manufacturing, 35(7), 3353-3375. https://doi.org/10.1007/s10845-023-02212-2
Liu, X., Guo, Z., Bai, D., & Yuan, C. (2022). Study on the mechanical properties and defect detection of low alloy steel weldments for large cruise ships. Ocean Engineering, 258, 111815. https://doi.org/10.1016/j.oceaneng.2022.111815
Lowde, M., John, H., George, A. P., Ruadan, G., Jasper, G. J., Richard, P., & John, S. (2022). The 100 m composite ship? Journal of Marine Science and Engineering, 10(3), 408.
Material Trends for FRP Boats. (2003). Reinforced Plastics, 47(9), 23-34. https://doi.org/10.1016/S0034-3617(03)00931-7
Mouritz, A. P., & Mathys, Z. (1999). Post-fire mechanical properties of marine polymer composites. Composite Structures, 47(1), 643-653. https://doi.org/10.1016/S0263-8223(00)00043-X
Ravenna, R., Soonseok, S., Weichao, S., Tonio, S., Claire, D. M. M. F., Tahsin, T., & Yigit, K. Dl. (2022). CFD analysis of the effect of heterogeneous hull roughness on ship resistance. Ocean Engineering, 258, 111733. https://doi.org/10.1016/j.oceaneng.2022.111733
Reichert, R. B. (2024). Wood, trade, and Spanish Naval power (c.1740-1795). Leiden, The Netherlands: Brill
Saravanan, M., & Kumar, D. B. (2021). A review on navy ship parts by advanced composite material. Materials Today: Proceedings, 45, 6072-6077. https://doi.org/10.1016/j.matpr.2020.10.074
Scheibe, M., Renata, D., Magdalena, U., & Andrzej, B. (2025). Polymer structural composites reinforced with hemp fibres: Impact tests of composites after long-term storage in representative aqueous environments and fire tests in the context of their disposal by energy recycling methods. Polymers, 17(3), 276. https://doi.org/10.3390/polym17030276
Sekban, D. M. (2025). Effect of friction stir process on mechanical properties and bottom section ultimate strength of ship steel. Journal of Materials Engineering and Performance, 34, 9772-9780. https://doi.org/10.1007/s11665-024-09791-y
Sekban, D. M., Ecren, U. Y., Mehmet, E. Ö., Murat, Y., & Abdelouahed, T. (2025). Investigating formability behavior of friction stir-welded high-strength shipbuilding steel using experimental, finite element, and artificial neural network methods. Journal of Materials Engineering and Performance, 34(6), 4942-4950. https://doi.org/10.1007/s11665-024-09501-8
Sekban, D. M., Ecren, U. Y., Mehmet, E. Ö., Şevval, Ö., Murat, Y., & Subrata, K. P. (2024). Formability behavior of AH-32 shipbuilding steel strengthened by friction stir process. Theoretical and Applied Fracture Mechanics, 132, 104485. https://doi.org/10.1016/j.tafmec.2024.104485
Sérougne, L. (2020). Teak conquest: Wars, forest imperialism and shipbuilding in India (1793-1815). Annales Historiques de la Révolution Française, 399(1), 121-149.
Shang, G., Liyun, X., Zufa, L., Zhuo, Z., & Zhun, X. (2024). Digital-twin-based predictive compensation control strategy for seam tracking in steel sheets welding of large cruise ships. Robotics and Computer-Integrated Manufacturing, 88, 102725. https://doi.org/10.1016/j.rcim.2024.102725
Song, S., Momchil, T., Tahsin, T., Yigit, K. D., Claire, D. M. M. F., & Atilla, I. (2023). Investigating roughness effects on ship resistance in shallow waters. Ocean Engineering, 270, 113643. https://doi.org/10.1016/j.oceaneng.2023.113643
Souppez, J. B. (2023). Structural design of wooden boats. In Proceedings of the Historic Ships Conference 2023. Historic Vessels: Sustainable Futures.
Šugar, V., & Zanze, J. (2021). Innovative capacities of shipbuilding organizations manufacturing composite ships. Enterprise Research Innovation, 7(1), 13-22. https://doi.org/10.54820/OPUE2583
Wahidi, S. I., Pribadi, T. W., Arif, M. S., & Raharja, G. B. (2021). Laminated mahogany and teak wood as construction materials for fishing vessels. IOP Conference Series: Earth and Environmental Science, 649, 012008. https://doi.org/10.1088/1755-1315/649/1/012008
Wang, Y., Guo, Z., Bai, X., & Yuan, C. (2021). Effect of weld defects on the mechanical properties of stainless-steel weldments on large cruise ship. Ocean Engineering, 235, 109385. https://doi.org/10.1016/j.oceaneng.2021.109385
Wing, J. T. (2015). Roots of empire: Forests and state power in early modern Spain, c.1500-1750. Leiden, The Netherlands: Brill.
Xu, S., Chen, J., Shen, W., Hou, R., & Wu, Y. (2022). Fatigue strength evaluation of 5059 aluminum alloy welded joints Considering welding deformation and residual stress. International Journal of Fatigue, 162, 106988. https://doi.org/10.1016/j.ijfatigue.2022.106988
Yaylacı, M., Yazıcıoğlu, A., Yaylacı, E. U., Terzi, M., & Birinci, A. (2025). Evaluation of the contact problem of two layers one of functionally graded, loaded by circular rigid block and resting on a Pasternak foundation by analytical and numerical (FEM and MLP) methods. Archive of Applied Mechanics, 95(4), 78. https://doi.org/10.1007/s00419-025-02787-7
Ziemińska-Stolarska, A., Sobulska, M., Pietrzak, M., & Zbiciński, I. (2024). Application of life cycle assessment to analysis of fibre composite manufacturing technologies in shipyards industry. Processes, 12(3), 461. https://doi.org/10.3390/pr12030461
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Maritime Technology and Research

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright: CC BY-NC-ND 4.0



