The Development of Phonological Loop and Visuospatial Sketchpad Working Memory Board Game in Child and Adolescence

Main Article Content

Nattaporn Opasanon

Abstract

Working memory is a cognitive function that involves memorizing and manipulating information. The deficit in this skill relates to several problems, including neuropsychological symptoms, developmental problems, and psychiatric disorders. This study therefore aims to develop a board game that accurately and appropriately measures the domains of language and auditory (phonological loop) and visual and spatial (visuospatial sketchpad) in Thai children and adolescents. To achieve this, the researchers examined the relationships between the board game developed in this study and the two standardized assessments, namely Digit span and Corsi block tapping. 178 children and adolescents aged between seven and nineteen years old from primary and secondary schools in the province of Phitsanulok, Thailand. After evaluating the participants' working memories by using the board game and the two standardized tests, results revealed positive relationships between all sub-measurements of the board game and the standardized assessments (p < .001). Thus, this study suggests that the board game developed measures both components of the cognitive functions. Further studies to continue and improve this tool will make this board game applicable in clinical settings.

Downloads

Download data is not yet available.

Article Details

How to Cite
Opasanon, N. . (2023). The Development of Phonological Loop and Visuospatial Sketchpad Working Memory Board Game in Child and Adolescence . Journal of Social Sciences Naresuan University, 19(2), 209–235. https://doi.org/10.14456/jssnu.2023.21
Section
Research Paper

References

Abrahamse, E. L., van Dijck, J. P., & Fias, W. (2017). Grounding verbal working memory: The case of serial order. Current Directions in Psychological Science, 26(5), 429–433. doi: org/10.1177/0963721417704404

Allen, K., Higgins, S., & Adams, J. (2019). The relationship between visuospatial working memory and mathematical performance in school-aged children: A systematic review. Educational Psychology Review, 31(3), 509–531. doi: org/10.1007/s10648-019-09470-8

Alloway, T. P., Gathercole, S. E., & Pickering, S. J. (2006). Verbal and visuospatial short-term and working memory in children: Are they separable? Child Development, 77(6), 1698–1716. doi: org/10.1111/j.1467-8624.2006.00968.x

Ang, S. Y., & Lee, K. (2010). Exploring developmental differences in visual short-term memory and working memory. Developmental Psychology, 46(1), 279–285. doi: org/10.1037/a0017554

Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559. doi: org/10.1126/science.1736359

Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417-423. doi: sorg/10.1016/s1364-6613(00)01538-2

Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839.

Baddeley, A. (2007). Working memory, thought, and action. Oxford; New York: Oxford University Press.

Banich, M. T. (2009). Executive function. Current Directions in Psychological Science, 18(2), 89-94. doi: org/10.1111/j.1467-8721.2009.01615.x

Barrouillet, P., Portrat, S., & Camos, V. (2015). On the law relating processing to storage in working memory. Psychological Review, 118(2), 175-192. doi: org/10.1037/a0022324

Beigneux, K., Plaie, T., & Isingrini, M. (2007). Aging effect on visual and spatial components of working memory. The International Journal of Aging and Human Development, 65(4), 301–314. doi: org/10.2190/ag.65.4.b

Bunge, S. A., & Zelazo, P. D. (2006). A brain-based account of the development of rule use in childhood. Current Directions in Psychological Science, 15(3), 118-121

Cambridge Cognition Ltd. (2014). Cantab computerized cognitive tests. Retrieved August, 1, 2022, from http://www.cambridgecognition.com/technology

Camos, V. (2015). Storing verbal information in working memory. Current Directions in Psychological Science, 24(6), 440–445. doi: org/10.1177/0963721415606630

Chen, X., Zhang, D., Zhang, X., Li, Z., Meng, X., He, S., & Hu, X. (2003). A functional MRI study of high-level cognition: II. The game of GO. Cognitive Brain Research, 16(1), 32–37.

Ching-Teng, Y. (2019). Effect of board game activities on cognitive function improvement among older adults in adult day care centers. Social Work in Health Care, 58(9), 825–838. doi: org/10.1080/00981389.2019.1656143

Conklin, H. M., Luciana, M., Hooper, C. J., & Yarger, R. S. (2007). Working memory performance in typically developing children and adolescents: Behavioral evidence of protracted frontal lobe development. Developmental Neuropsychology, 31(1), 103–128. doi: org/10.1207/s15326942dn3101_6

Cowan, N., Gathercole, S. E., & Baddeley, A. D. (1995). Verbal working memory: A view with a room. The American Journal of Psychology, 108(1), 123. doi: org/10.2307/1423105

Cromheeke, S., & Mueller, S. C. (2015). The power of a smile: Stronger working memory effects for happy faces in adolescents compared to adults. Cognition and Emotion, 30(2), 288–301. doi: org/10.1080/02699931.2014.997196

Dehn, M. J., Kaufman, A. S., & Kaufman, N. L. (2015). Working memory model. In M. J. Dehn (Ed), Essentials of working memory assessment and intervention (pp. 1-16). New Jersey: Wiley.

Demoulin, C., & Kolinsky, R. (2015). Does learning to read shape verbal working memory? Psychonomic Bulletin & Review, 23(3), 703–722. doi: org/10.3758/s13423-015-0956-7

Emch, M., von Bastian, C. C., & Koch, K. (2019). Neural correlates of verbal working memory: An fMRI meta-analysis. Frontiers in Human Neuroscience, 13, 180 doi: org/10.3389/fnhum.2019.00180

Feigenbaum, J. D., Polkey, C. E., & Morris, R. G. (1996). Deficits in spatial working memory after unilateral temporal lobectomy in man. Neuropsychologia, 34(3), 163–176. doi: org/10.1016/0028-3932(95)00107-7

Gerton, B. K., Brown, T. T., Meyer-Lindenberg, A., Kohn, P., Holt, J. L., Olsen, R. K., & Berman, K. F. (2004). Shared and distinct neurophysiological components of the Digits forward and backward tasks as revealed by functional neuroimaging. Neuropsychologia, 42(13), 1781–1787. doi: org/10.1016/j.neuropsychologia.2004.04.023

Halperin, J. M., & Schulz, K. P. (2006). Revisiting the role of the prefrontal cortex in the pathophysiology of attention-deficit/hyperactivity disorder. Psychological Bulletin, 132(4), 560–581. https://doi.org/10.1037/0033-2909.132.4.560

Holmes, J., Gathercole, S. E., Place, M., Alloway, T. P., Elliott, J. G., & Hilton, K. A. (2010). The diagnostic utility of executive function assessments in the identification of ADHD in children. Child and Adolescent Mental Health, 15(1), 37-43.

Ikhlas, A. (2018). Visuospatial cognition, movement, and the mathematic achievement of students (Doctoral dissertation). CA: University of California, Riverside.

Joaquín, M. F. (2008). The prefrontal cortex (4th ed.). San Diego: Academic Press.

Kessels, R. P. C., & Postma, A. (2017). The box task: A tool to design experiments for assessing visuospatial working memory. Behavior Research Methods, 50(5), 1981–1987. doi: org/10.3758/s13428-017-0966-7

Kessels, R. P. C., van den Berg, E., Ruis, C., & Brands, A. M. A. (2008). The Backward span of the corsi block-tapping task and its association with the WAIS-III digit span. Assessment, 15(4), 426–434. https://doi.org/10.1177/1073191108315611

Kim, S., Song, K., Lockee, B., & Burton, J. (2017) Gamification in learning and education: Enjoy learning like gaming. Cham: Springer.

Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlström, K., ... Westerberg, H. (2005). Computerized training of working memory in children with ADHD-A randomized, controlled trial. Journal of the American Academy of Child & Adolescent Psychiatry, 44(2), 177-186. doi:10.1097/00004583-200502000-00010

Lehnert, G., & Zimmer, H. D. (2006). Auditory and visual spatial working memory. Memory & Cognition, 34(5), 1080-1090. doi: org/10.3758/bf03193254

Logie, R. H., Engelkamp, J., Dehn, D., Rudkin, S., & Denis, M. (2001). Actions, mental actions, and working memory. In M. Denis, R. H. Logie, C. Cornoldo, M. D. Vega, & J. EngelKamp (Eds). Imagery, language and vsuo-spatial thinking (pp. 161-183). Hove, East Sussex [England]: Psychology Press.

Masoura, E., Gogou, A., & Gathercole, S. E. (2020). Working memory profiles of children with reading difficulties who are learning to read in Greek. Dyslexia, 27(3), 312–324. doi: org/10.1002/dys.1671

McNab, F., Varrone, A., Farde, L., Jucaite, A., Bystritsky, P., Forssberg, H., & Klingberg, T. (2009). Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science’s STKE, 323(5915), 800-802.

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100.

Morais, R. M., Pera, M. V., Ladera, V., Oliveira, J., & García, R. (2018). Individual differences in working memory abilities in healthy adults. Journal of Adult Development, 25(3), 222–228. doi: org/10.1007/s10804-018-9287-z

Myatchin, I., Lemiere, J., Danckaerts, M., & Lagae, L. (2012). Within-subject variability during spatial working memory in children with ADHD: An event-related potentials study. European Child and Adolescent Psychiatry, 21(4), 199-210.

Nairne, J. S. (2002). Remembering over the short-term: The case against the standard model. Annual Review of Psychology, 53(1), 53–81. https://doi.org/10.1146/annurev.psych.53.100901.135131

Ootou, H. (2014). Relationship between visuo-spatial working memory and cognitive distance on map learning. Retrieved September 8, 2019, from https://www.jstage.jst.go.jp/article/pacjpa/78/0/78_3AM-1-082/_article/-char/ja/

Otsuka, Y., & Osaka, N. (2015). High-performers use the phonological loop less to process mental arithmetic during working memory tasks. Quarterly Journal of Experimental Psychology, 68(5), 878–886. https://doi.org/10.1080/17470218.2014.966728

Pickering, S. J., Gathercole, S. E., Hall, M., & Lloyd, S. A. (2001). Development of memory for pattern and path: Further evidence for the fractionation of visuo-spatial memory. Quarterly Journal of Experimental Psychology, 54(2), 397–420. https://doi.org/10.1080/713755973

Ramsay, M. C., & Reynolds, C. R. (1995). Separate digits tests: A brief history, a literature review, and a reexamination of the factor structure of the test of memory and learning (TOMAL). Neuropsychology Review, 5(3), 151-171. https://doi.org/10.1007/bf02214760

Repovs, G., & Baddeley, A. (2006). The multi-component model of working memory: Explorations in experimental cognitive psychology. Neuroscience, 139(1), 5-21. doi: 10.1016/j.neuroscience.2005.12.061

Schell, J. (2014). The art of game design: A deck of lenses (2nd ed.). Pittsburgh, Pa.: Schell Games.

Se, H. K., Doug, H. H., Young, S. L., Bung-Nyun, K., Jae, H. C., & Sang, H. H. (2014). Baduk (the game of Go) improved cognitive function and brain activity in children with attention deficit hyperactivity disorder. Psychiatry Investigation, 11(2), 143.

Tomlinson, S. P., Davis, N. J., Morgan, H. M., & Bracewell, R. M. (2013). Cerebellar Contributions to verbal working memory. The Cerebellum, 13(3), 354-361. doi: org/10.1007/s12311-013-0542-3

Vandierendonck, A., Kemps, E., Fastame, M. C., & Szmalec, A. (2004). Working memory components of the Corsi blocks task. British Journal of Psychology, 95(1), 57-79.

Vecchi, T., Richardson, J., & Cavallini, E. (2005). Passive storage versus active processing in working memory: Evidence from age-related variations in performance. European Journal of Cognitive Psychology, 17(4), 521–539. doi: org/10.1080/09541440440000140

Vieira, F. D., Ribeiro, D. O., Farias, H. B., & Freitas, P. M. (2021). The Working Memory as Predictor of Performance in Arithmetic of Brazilian Students. Paidéia (Ribeirão Preto), 31. https://doi.org/10.1590/1982-4327e3119

Wang, W., Fan, L., Wang, Z., Liu, X., & Zhang, S. (2021). Effects of phonological loop on inferential processing during Chinese text reading: Evidence from a dual-task paradigm. PsyCh Journal, 10(4), 521-533. https://doi.org/10.1002/pchj.451

Wechsler, D. (1991) Wecshler intelligence scale for children-third edition (wisc-iii). In W. I. Dorfman & M. HersenUnderstanding (Eds.)., Psychological Assessment (pp. 219-234). New York: Kluwer Academic.

Wechsler, D. (2014). Wechsler Intelligence scale for children (5th ed). Bloomington, MN: Pearson.

Welsh, M. C., Pennington, B. F., & Groisser, D. B. (1991). A normative-developmental study of executive function: A window on prefrontal function in children. Developmental Neuropsychology, 7(2), 131-149.

White, K. G. (2012). Dissociation of short-term forgetting from the passage of time. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(1), 255–259. doi: org/10.1037/a0025197

Zady, M. F. (2000). Correlation and simple least squares regression. Clinical laboratory science program. Louisville, Kentucky: University of Louisville.

Zelazo, P. D., Craik, F. I., & Booth, L. (2004). Executive function across the life span. Acta Psychologica, 115(2), 167-183.