The solution of the diophantine equation forms 24^x+4^y=z^2 and 35^x+4^y=z^2

Main Article Content

Patchara Muangkarn
Sutipong Khamtheang
Cholatis Suanoom

Abstract

In this paper, we find positive integral solutions of the Diophantine equation gif.latex?24^x+4^y=z^2 and gif.latex?35^x+4^y=z^2 Moreover, we proved the Diophantine equation. by creating mathematical tools.

Article Details

Section
Research articles

References

Acu, D., 2007. On a Diophantine Equation 2x +

David, M. B., 2007. Elementary Number Theor

Kenneth, H. R., 2000. Elementary Number Th

Wesley Longman, Inc.

Mordell, L. J. 1969. Diophantine Equations. Ac

Sandor, J. 2002. On a diophantine equation 3x

equations and arithmetic functions. Amer

[ 6 ] Sandor, J. 2 0 0 2 . On a Diophantine equat

Diophantine equations and arithmetic fun

, 91-92.

Sierpinski, W. 1964. Elementary Theory of Num

Silverman, J. H. 2001. A Friendly Introduction

Inc., New Jersey,

Suvarnamani,A. 2011. Solution of the Diophantine

Sciences and Applications, 1(3), Septemb

Mihailescu, P. 2004. Primary cycolotomic u

Reine Angew. Math. 27, 167-195

Suvarnamani, A. & Singtaand,A. & Chotchaisthit

x + 7y = z2and 4x + 11y = z2, Science a

[ 12] sammsa, A. 2020. Diophantine equations

Rajabhat Mathematics Journal, 67 – 71.