A Note on Calculus: Bisection Point Theorem

Main Article Content

Wanwisa Puangmalai
Paichayon Sirisathianwatthana
Nirutt Pipattanajinda

Abstract

In this note, we defined the bisection point, the point  on a closed interval  with a continuous and nonnegative function of real numbers such that the value of the definite integral between the  and  is equal. Furthermore, we present several examples to demonstrate how to find the bisection point on a nonnegative polynomial function.


 

Article Details

Section
Research articles

References

Boyer, Carl B., and Uta C. Merzbach. A History of Mathematics. John Wiley & Sons, 2011.

Strang G. and Herman, E. "Calculus Volume 1." Rice University. https://assets.openstax.org/ oscms-prodcms/media/documents/Calculus_Volume_1_-_WEB_68M1Z5W.pdf

Weisstein, Eric W. "Calculus." From MathWorld--A Wolfram Web Resource. https://mathworld. wolfram.com/Calculus.html

Weisstein, Eric W. "Second Fundamental Theorem of Calculus." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SecondFundamentalTheoremof Calculus.html