Numerical Analysis and Experimentation of an AC Voltage Regulator for Spot Welding Machine

Main Article Content

Jirasak Songbunkaew
Ekkapol Tubpond
Piyada Phosri
Chamonwut Tamnanchit
Waraporn Summart

Abstract

This study aimed to present the development of a chain welding machine equipped with voltage level control and to analyze the results obtained from measuring the input voltage of the transformer in comparison to numerical mathematical analysis.The experiment was conducted by regulating the welding current using a microcontroller, which generates trigger signals for the Silicon-Controlled Rectifier (SCR) in a single-phase full-wave AC-AC converter circuit. The experimental results were compared to numerical analysis, and the study found that it is feasible to control the welding current to suit the specific type of chain being used. The AC voltage adjustment unit connected to the chain welding machine was utilized to adjust the voltage for welding chains of various sizes. The results obtained from mathematical analysis were found to be consistent with the experimental results in adjusting the voltage, with a maximum discrepancy of 6.18% compared to numerical mathematical analysis.

Article Details

Section
Research articles

References

กรมชลประทาน. (2562). เครื่องเชื่อมไฟฟ้า. https://shorturl.asia/YGd2e. ค้นเมื่อ 25 มีนาคม 2567.

กวิน สนธิเพิ่มพูน ชลลดา เรือนอินทร์ เดชฤทธิ์ กิติเดช ปริญญา ดวงจิตร์. (2566). การหาค่าตัวแปรที่เหมาะสมในการเชื่อมจุดของอลูมิเนียมอัลลอย 6061-T6 ในอุตสาหกรรมยานยนต์. วารสารวิศวกรรมศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ, 18(2): 96-110.

บริษัท ซิสเต็มส์สโตน จำกัด. (2567). อายุของเครื่องจักร และแนวโน้มอาการเสียในแต่ละอุตสาหกรรม ปัจจัยใดที่ส่งผลต่อการใช้งาน. https://factorium.tech/article-june-industrialmachine/. ค้นเมื่อ 16 กุมภาพันธ์ 2567.

Bendrich, M., Scheuer, A., Hayes, R. E., & Votsmeier, M. (2018). Unified mechanistic model for Standard SCR, Fast SCR, and NO2 SCR over a copper chabazite catalyst. Applied Catalysis B: Environmental, 222: 76-87. https://doi.org/10.1016/j.apcatb.2017.09.069.

Dai, W., Li, D., Tang, D., Wang, H., & Peng, Y. (2022). Deep learning approach for defective spot welds classification using small and class-imbalanced datasets. Neurocomputing, 477: 46-60. https://doi.org/10.1016/j.neucom.2022.01.004

Damma, D., Ettireddy, P. R., Reddy, B. M., & Smirniotis, P. G. (2019). A review of low temperature NH3-SCR for removal of NOx. Catalysts, 9(4): 3-35. https://doi.org/10.3390/catal9040349.

Doshi, A., Smith, R. T., Thomas, B. H., & Bouras, C. (2017). Use of projector based augmented reality to improve manual spot-welding precision and accuracy for automotive manufacturing. International Journal of Advanced Manufacturing Technology, 89: 1279–1293. https://doi.org/10.1007/s00170-016-9164-5

Forzatti, P. (2001). Present status and perspectives in de-NOx SCR catalysis. Applied Catalysis A: General, 222(1–2): 221-236. https://doi.org/10.1016/S0926-860X(01)00832-8

Gao, F. (2020). Fe-exchanged small-pore zeolites as ammonia selective catalytic reduction (Nh3-scr) catalysts. Catalysts, 10(11): 1-33. https://doi.org/10.3390/catal10111324

Ivan, P., Janez, G., and Elsayed A. ESMAIL. (2008). sources of acoustic emission in resistance spot welding. Česká Společnost Pro Nedestruktivní Zkoušení Materiálu Mezinárodní Konference Defektoskopie 2008, 187-194.

Palmonella, M., Friswell, M. I., Mottershead, J. E., & Lees, A. W. (2005). Finite element models of spot welds in structural dynamics: Review and updating. Computers and Structures, 83(8–9): 648-661. https://doi.org/10.1016/j.compstruc.2004.11.003

Popa, G., Sora, I., Diniş, C., Deacon, S. (2014). an analysis on the velocity of dust particles in the plate-type electrostatic precipitators used in thermoelectric power plants. Environment Protection Engineering, 40(1). 85-102. DOI: 10.5277/epe140107.

Pouranvari, M. (2017). Fracture toughness of martensitic stainless steel resistance spot welds. Materials Science and Engineering: A, 680: 97-107. https://doi.org/10.1016/j.msea.2016. 10.088

Shi, Z., Peng, Q., E, J., Xie, B., Wei, J., Yin, R., & Fu, G. (2023). Mechanism, performance and modification methods for NH3-SCR catalysts: A review. Fuel, 331(2). https://doi.org/10.1016/j.fuel.2022.125885

Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169(7). https://doi.org/10.7326/M18-0850