Insight into the role of transition metals doping in GeTe for spintronic application: Spin density functional study
Main Article Content
Abstract
The structural, electronic and magnetic properties of GeTe semiconductors doped with several transition metals are determined by the spin density functional theory. Due to the formation energies, (Ge, Cr)Te is the most stable among all doped systems. The incorporation of transition metals convinces the reduction of lattice parameters and volumes. The total magnetization is mainly contributed from transition metal, Te and Ge atoms, respectively. The p-d exchange hybridization gives rise to the magnetism. (Ge, Mn)Te is the semiconductor with a reduced band gap. Co, Ni and Cu impurities convert semiconductor to metal. Possibility of p-type half metallicity in V-, Cr- and Fe-substituted GeTe is achieved. Finally, the theoretical work delivers the valuable clues for improving the understanding of transition-metal doping impacts and sheds some light on the exploration of spintronic materials based on transition-metal doped GeTe
Article Details
The Journal of Science and Science Education (JSSE) retain the right of all articles published in JSSE. The coresponding author or the authorized person on behalf of the authors must send the complete Copyright Transfer Form to JSSE before any article get published in JSSE.
Copyright Transfer Form
The JSSE request the coresponding author or the authorized person on behalf of the authors upload the manuscript under the together with the Copyright Transfer Form under the supplementary data. The guidline for uploading both manuscript and Copyright Transfer Form is shown below:
1. Upload the manuscript in the sub-menu, Article Component > Article Text.
2. Upload the the Copyright Transfer Form in the sub-menu, Article Component > Other.
Download Copyright Transfer Form
References
Broyden, C. G. (1970). The convergence of a class of double-rank minimization algorithms: 2. The new algorithm. IMA journal of applied mathematics, 6(3), 222.
Chang, L. L., Stiles, P. J. and Esaki, L. (1966). Electron Barriers in Al-Al2O3-SnTe and Al-Al2O3-GeTe Tunnel Junctions. IBM Journal of Research and Development, 10(6), 484.
Ciucivara, A., Sahu, B. R. and Kleinman, L. (2007). Density functional study of Ge1−xMnxTe. Physical Review B, 75(24), 241201.
Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I., Refson, K. and Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift für Kristallographie-Crystalline Materials, 220(5-6), 567.
Cochrane, R. W., Plischke, M. and Ström-Olsen, J. O. (1974). Magnetization studies of GeTe1−xMnTex pseudobinary alloys. Physical Review B, 9(7), 3013.
Dietl, T. (2007). The Handbook of Magnetism and Advanced Magnetic Materials. Wiley, New York.
Dietl, T. (2007). Lecture Notes on Semiconductor Spintronics. Retrieved 1 July 2021 from arxiv: https://arxiv.org/abs/0801.0145.
Dietl, T. and Ohno, H. (2014). Dilute ferromagnetic semiconductors: Physics and spintronic structures. Reviews of Modern Physics, 86(1), 187.
Fletcher, R. (1970). A new approach to variable metric algorithms. The computer journal, 13(3), 317.
Fukuma, Y., Murakami, T., Asada, H. and Koyanagi, T. (2001). Film growth of Ge1−xMnxTe using ionized-cluster beam technique. Physica E: Low-dimensional Systems and Nanostructures, 10(1-3), 273.
Fukuma, Y., Asada, H., Moritake, N., Irisa, T. and Koyanagi, T. (2007). Ferromagnetic semiconductor Ge1−xCrxTe with a Curie temperature of 180 K. Applied Physics Letters, 91(9), 092501.
Fukuma, Y., Asada, H., Miyawaki, S., Koyanagi, T., Senba, S., Goto, K. and Sato, H. (2008). Carrier-induced ferromagnetism in Ge0.92Mn0.08Te epilayers with a Curie temperature up to 190 K. Applied Physics Letters, 93(25), 252502.
Goldfarb, D. (1970). A family of variable-metric methods derived by variational means. Mathematics of computation, 24(109), 23.
Lechner, R. T., Springholz, G., Hassan, M., Groiss, H., Kirchschlager, R., Stangl, J. and Bauer, G. (2010). Phase separation and exchange biasing in the ferromagnetic IV-VI semiconductor Ge1−xMnxTe. Applied physics letters, 97(2), 023101.
Lewis, J. E. (1973). Optical properties and energy gap of GeTe from reflectance studies. physica status solidi (b), 59(1), 367.
Lim, S. T., Hui, L., Bi, J. F. and Teo, K. L. (2011). Weak localization and antilocalization of hole carriers in degenerate p-Ge1−xMnxTe. Journal of Applied Physics, 110(11), 113916.
Lim, S. T., Bi, J. F., Hui, L. and Teo, K. L. (2011). Exchange interaction and Curie temperature in Ge1−xMnxTe ferromagnetic semiconductors. Journal of Applied Physics, 110(2), 023905.
Liu, Y., Bose, S. K. and Kudrnovský, J. (2012). Half-metallicity and magnetism of GeTe doped with transition metals V, Cr, and Mn: A theoretical study from the viewpoint of application in spintronics. Journal of Applied Physics, 112(5), 053902.
Liu, J. D., Miao, X. S., Tong, F., Luo, W. and Xia, Z. C. (2013). Ferromagnetism and electronic transport in epitaxial Ge1−xFexTe thin film grown by pulsed laser deposition. Applied Physics Letters, 102(10), 102402.
Liu, Y., Bose, S. K. and Kudrnovský, J. (2016). Electronic structure and magnetism of Ge(Sn)TMXTe1−X (TM= V, Cr, Mn): A first principles study. AIP Advances, 6(12), 125005.
Ohno, H., Matsukura, F. and Ohno Y. (2002). Semiconductor spin electronics. JSAP Int, 5, 4.
Okoye, C. M. I. (2002). Electronic and optical properties of SnTe and GeTe. Journal of Physics: Condensed Matter, 14(36), 8625.
Perdew, J. P., Burke, K. and Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865.
Rodot, M., Lewis, J., Rodot, H., Villers, G., Cohen, J. and Mollard, P. (1966). Magnetic interactions between Mn spins diluted in GeTe. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 21, 627.
Seddon, T., Gupta, S. C. and Saunders, G. A. (1976). Hole contribution to the elastic constants of SnTe. Solid State Communications, 20(1), 69.
Segall, M. D., Lindan, P. J., Probert, M. A., Pickard, C. J., Hasnip, P. J., Clark, S. J. and Payne, M. C. (2002). First-principles simulation: ideas, illustrations and the CASTEP code. Journal of physics: condensed matter, 14(11), 2717.
Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimization. Mathematics of computation, 24(111), 647.
Tsu, R., Howard, W. E. and Esaki, L. (1968). Optical and electrical properties and band structure of GeTe and SnTe. Physical Review, 172(3), 779.
Tung, Y. W., & Cohen, M. L. (1969). Relativistic band structure and electronic properties of SnTe, GeTe, and PbTe. Physical Review, 180(3), 823.
Wolf, S. A., Chtchelkanova, A. Y. and Treger, D. M. (2006). Spintronics-A retrospective and perspective. IBM Journal of Research and Development, 50(1), 101.
Zhao, Y. H., Xie, W. H., Zhu, L. F. and Liu, B. G. (2006). Half-metallic ferromagnets based on the rock-salt IV–VI semiconductor GeTe. Journal of Physics: Condensed Matter, 18(45), 10259.
Zvereva, E. A., Savelieva, O. A., Primenko, A. E., Ibragimov, S. A., Slyn’ko, E. I. and Slyn’ko, V. E. (2010). Anomalies in electron spin resonance spectra of Ge1−xMnxTe diluted magnetic semiconductors. Journal of Applied Physics, 108(9), 093923.