Effect of aquaculture-agriculture sewage on the relation between iron and other trace element content in Venus clam from the coastal lagoons of the Gulf of California

Authors

  • Héctor Hugo Vargas-González Centro de Investigaciones Biológicas del Noroeste, S.C. Carretera al Tular, Guaymas, Sonora, México
  • José Alfredo Arreola-Lizárraga Centro de Investigaciones Biológicas del Noroeste, S.C. Carretera al Tular, Guaymas, Sonora, México
  • Lía Celina Méndez-Rodríguez Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz. Baja California Sur, México
  • Ramón Gaxiola-Robles Hospital General de Zona No.1, Instituto Mexicano del Seguro Social, 5 de febrero y Héroes de la Independencia, Centro, La Paz, Baja California Sur, México
  • Jaqueline García-Hernández Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera al Varadero Nacional km 6.6, Guaymas, Sonora, México
  • Sergio Ticul Alvarez-Castañeda Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz. Baja California Sur, México

DOI:

https://doi.org/10.33175/mtr.2020.241229

Keywords:

Trace elements, Generalized linear model, Seafood, Provisional Tolerable Weekly Intake

Abstract

In coastal systems, concentrations of trace metals in filter feeders such as shellfish may be affected by anthropogenic activities, including agriculture and aquaculture. Shellfish are a good source of iron, but can also be a potential source of toxic elements, such as cadmium and lead, when consumed by humans. The objective of this study was to determine the differences in iron, zinc, copper, manganese, nickel, lead, and cadmium levels in tissue of the clam Chione gnidia collected from a coastal lagoon influenced by agriculture (Lobos) or aquaculture (Tobari), using an atomic absorption spectrophotometer. The relationship of iron with all other trace elements in these organisms was explored using a generalized linear model (GLM).  Iron, copper, manganese, and cadmium concentrations were significantly higher in shellfish collected from the coastal lagoon influenced by agriculture, while nickel was significantly higher in shellfish from the lagoon influenced by aquaculture. In these shellfish, cadmium and lead levels were the factors limiting the weekly intake of clam flesh. The GLM model explained 59% of the iron concentration in Venus clam, suggesting that this element is directly related to zinc and manganese levels, but inversely related to cadmium content in Venus clam.

References

Alemán-Mateo, H., Salazar, G., Hernández-Triana, M., & Valencia, M. E. (2006). Total energy expenditure, resting metabolic rate and physical activity level in free-living rural elderly men and women from Cuba, Chile and México. European Journal of Clinical Nutrition, 60, 1258. doi:10.1038/sj.ejcn.1602446

Ali, H., Rico, A., Murshed-e-Jahan, K., & Belton, B. (2016). An assessment of chemical and biological product use in aquaculture in Bangladesh. Aquaculture, 454, 199-209. doi:10.1016/j.aquaculture.2015.12.025

Anandkumar, A., Nagarajan, R., Prabakaran, K., Bing, C. H., Rajaram, R., Li, J., & Du, D. (2019). Bioaccumulation of trace metals in the coastal Borneo (Malaysia) and health risk assessment. Marine Pollution Bulletin, 145, 56-66. doi:10.1016/j.marpolbul.2019.05.002

Arumugam, A., Li, J., Krishnamurthy, P., Jia, Z. X., Leng, Z., Ramasamy, N., & Du, D. (2020). Investigation of toxic elements in Carassius gibelio and Sinanodonta woodiana and its health risk to humans. Environmental Science and Pollution Research International, 27, 19955-19969. doi:10.1007/s11356-020-08554-1

Au, C., Benedetto, A., & Aschner, M. (2008). Manganese transport in eukaryotes: the role of DMT1. Neurotoxicology, 29(4), 569-576. doi:10.1016/j.neuro.2008.04.022

Barany, E., Bergdahl, I., Bratteby, L. E., Lundh, T., Samuelson, G., Skerfving, S., & Oskarsson, A. (2005). Iron status influences trace element levels in human blood and serum. Environmental Research, 98(2), 215-223. doi:10.1016/j.envres.2004.09.010

Bilandžić, N., Sedak, M., Đokić, M., Varenina, I., Kolanović, B. S., Božić, Đ., Brstilo, M., & Šimić, B. (2014). Determination of zinc concentrations in foods of animal origin, fish and shellfish from Croatia and assessment of their contribution to dietary intake. Journal of Food Composition and Analysis, 35(2),61-66. doi:10.1016/j.jfca.2014.04.006

Black, R. E. (2003). Zinc deficiency, infectious disease and mortality in the developing world. The Journal of Nutrition, 133(5), 1485S-1489S. doi:10.1093/jn/133.5.1485S

Boisson, F., Cotret, O., & Fowler, S. W. (1998). Bioaccumulation and retention of lead in the mussel Mytilus galloprovincialis following uptake from seawater. The Science of the Total Environment, 222, 55-61. doi:10.1016/S0048-9697(98)00287-3

Cadena-Cárdenas, L., Méndez-Rodríguez, L., Zenteno-Savín, T., García-Hernández, J., & Acosta-Vargas, B. (2009). Heavy metal levels in marine mollusks from areas with, or without, mining activities along the Gulf of California, Mexico. Archives of Environmental Contamination and Toxicology, 57(1), 96-102. doi:10.1007/s00244-008-9236-0

Copes, R., Clark, N. A., Rideout, K., Palaty, J., & Teschke, K. (2008). Uptake of cadmium from Pacific oysters (Crassostrea gigas) in British Columbia oyster growers. Environmental Research, 107(2), 160-169. doi:10.1016/j.envres.2008.01.014

Defarge, N., Spiroux de Vendômois, J., & Séralinia, G. E. (2018). Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicology Reports, 5, 156-163. doi:10.1016/j.toxrep.2017.12.025

EFSA. (2010). EFSA Panel on Contaminants in the Food Chain (CONTAM): Scientific opinion on lead in food. EFSA Journal, 8(4), 1570. doi:10.2903/j.efsa.2010.1570

FDA, US. (2007). Guide for the control of molluscan shellfish. Guidance documents chapter II. Growing areas: 04. Action levels, tolerances and guidance levels for poisonous or deleterious substances in seafood. Maryland: US Food and Drug Administration. Center for Food Safety and Applied Nutrition, Maryland, USA, pp. 549.

Freeland-Graves, J. H., Sanjeevi, N., & Lee, J. J. (2015). Global perspectives on trace element requirements. Journal of Trace Elements in Medicine and Biology, 31, 135-141. doi:10.1016/j.jtemb.2014.04.006

Góngora-Gómez, A. M., Domínguez-Orozco, A. L., Villanueva-Fonseca, B. P., Muñoz-Sevilla, N. P., & García-Ulloa, M. (2018). Seasonal levels of heavy metals in soft tissue and muscle of the pen shell Atrina maura (sowerby, 1835) (bivalvia: Pinnidae) from a farm in the southeastern coast of the gulf of California, Mexico. Revista Internacional de Contaminación Ambiental, 34(1), 57-68. doi:10.20937/RICA.2018.34.01.05

Guillette, E. A., Meza, M. M., Aquilar, M. G., Soto, A. D., & Garcia, I. E. (1998). An anthropological approach to the evaluation of preschool children exposed to pesticides in Mexico. Environmental Health Perspectives, 106(6), 347-353. doi:10.1289/ehp.98106347

Hatje, V., de Souza, M. M., Ribeiro, L. F., Eça, G. F., & Barros, F. (2016). Detection of environmental impacts of shrimp farming through multiple lines of evidence. Environmental pollution, 219, 672-684. doi:10.1016/j.envpol.2016.06.056

Jara-Marini, M. E., Tapia-Alcaraz, J. N., Dumer-Gutiérrez, J. A., García-Rico, L., García-Hernández, J., & Páez-Osuna. F. (2013). Comparative bioaccumulation of trace metals using six filter feeder organisms in a coastal lagoon ecosystem (of the central-east Gulf of California). Environment Monitoring Assessment, 185(2), 1071-1085. doi:10.1007/s10661-012-2615-z

Jara-Marini, M. E., Molina-García, A., Martínez-Durazo, Á., & Páez-Osuna, F. (2020). Trace metal trophic transference and biomagnification in a semiarid coastal lagoon impacted by agriculture and shrimp aquaculture. Environmental Science and Pollution Research, 27(5), 5323-5336. doi:10.1007/s11356-019-06788-2

JECFA. (1982a). Zinc: Summary of Evaluations Performed by the Joint FAO/WHO Expert Committee on Food Additives. TRS 683-JECFA 26/32. Retrieved from http://www.inchem.org/documents/jecfa/jeceval/jec_2411.htm

JECFA. (1982b). Copper: Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). TRS 683-JECFA 26/31. Retrieved from http://apps.who.int/food-additives-contaminants-jecfa-database/PrintPreview.aspx?chemID=2824

JECFA. (2010). Cadmium: Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Report TRS 983 JECFA 77. Retrieved from http://apps.who.int/food-additives-contaminants-jecfa-database/PrintPreview.aspx?chemID=1376

JEFCA. (1983). Iron: Summary of Evaluations Performed by the Joint FAO/WHO Expert Committee on Food Additives. Report TRS 696-JECFA 27/29. Retrieved from http://www.inchem.org/documents/jecfa/jeceval/jec_1132.htm

Jović, M., & Stanković, S. (2014). Human exposure to trace metals and possible public health risks via consumption of mussels Mytilus galloprovincialis from the Adriatic coastal area. Food and Chemical Toxicology, 70, 241-251. doi:10.1016/j.fct.2014.05.012

Kongkachuichai, R., Napatthalung, P., & Charoensiri, R. (2002). Heme and nonheme iron content of animal products commonly consumed in Thailand. Journal of Food Composition and Analysis, 15(4), 389-398. doi:10.1006/jfca.2002.1080

Lai, J. F., Dobbs, J., & Dunn, M. A. (2012). Evaluation of clams as a food source of iron: Total iron, heme iron, aluminum, and in vitro iron bioavailability in live and processed clams. Journal of Food Composition and Analysis, 25(1), 47-55.

León-Cañedo, J. A., Alarcón-Silvas, S. G., Fierro-Sañudo, J. F., Mariscal-Lagarda, M. M., Díaz-Valdés, T., & Páez-Osuna, F. (2017). Assessment of environmental loads of Cu and Zn from intensive inland shrimp aquaculture. Environmental Monitoring and Assessment, 189(2), 69. doi:10.1007/s10661-017-5783-z

Lönnerdal, B. (2000). Dietary factors influencing zinc absorption. The Journal of Nutrition, 130(5S), 1378S-1383S. doi:10.1093/jn/130.5.1378S

Mehmood, T., Chaudhry, M. M., Tufail, M., & Irfan, N. (2009). Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Microchemical Journal, 91(1), 94-99. doi:10.1016/j.microc.2008.08.009

Méndez, L., Salas-Flores, L., Arreola-Lizarraga, A., Alvarez-Castañeda, S., & Acosta, B. (2002). Heavy metals in clams from Guaymas Bay, Mexico. Bulletin of Environmental Contamination and Toxicology, 68(2), 217-223. doi:10.1007/s001280241

Mikolić, A., Schönwald, N., & Piasek, M. (2016). Cadmium, iron and zinc interaction and hematological parameters in rat dams and their offspring. Journal of Trace Elements in Medicine and Biology, 38, 108-116. doi:10.1016/j.jtemb.2016.08.008

National Academies of Sciences, Engineering and Medicine. (2017). Guiding principles for developing dietary reference intakes based on chronic disease. Washington, DC: The National Academies Press. doi:10.17226/24828.

Newell, R. I., Fisher, T. R., Holyoke, R.R., & Cornwell, J. C. (2005). Influence of eastern oysters on nitrogen and phosphorus regeneration in Chesapeake Bay, USA. In: Dame, R. F., & Olenin, S (Eds). The comparative roles of suspension-feeders in ecosystems. NATO Science Series IV: Earth and Environmental Series, Vol. 47. Dordrecht: Springer, pp. 93-120.

Nordberg, M., & Nordberg, G. F. (2016). Trace element research-historical and future aspects. Journal of Trace Elements in Medicine and Biology, 38, 46-52. doi:10.1016/j.jtemb.2016.04.006

Prabhakaran, K., Nagarajan, R., Franco, F. M., & Kumar, A. A. (2017). Biomonitoring of Malaysian aquatic environments: A review of status and prospects. Ecohydrology & Hydrobiology, 17(2), 134-147. doi:10.1016/j.ecohyd.2017.03.001

Reilly, C. (2008). Metal contamination of food: Its significance for food quality and human health. Oxford: John Wiley & Sons, p. 284.

Sandstrom, B. (2001). Micronutrient interactions: Effects on absorption and bioavailability. British Journal of Nutrition, 85(S), S181-S185.

Sarma, K. A. M. A. L., Kumar, A. A., George, G., Pandian, P. K., Roy, S. D., & Srivastava, R. C. (2013). Impact of coastal pollution on biological, biochemical and nutritional status of edible oyster in Phoenix Bay Jetty and North Wandoor of Andaman. Indian Journal of Animal Sciences, 83(3), 321-325.

Sepúlveda, C. H., Góngora-Gómez, A. M., Álvarez-Pérez, S., Rodríguez-González, H., Muñoz-Sevilla, N. P., Villanueva-Fonseca, B. P., Hernández-Sepúlveda, J. A., & García-Ulloa, M. (2020). Trace metals in two wild populations of the mexican chocolate clam Megapitaria squalida in the southeastern Gulf of California, México. Revista Internacional de Contaminación Ambiental. doi:10.20937/RICA.53565

Soeters, P., Bozzetti, F., Cynober, L., Forbes, A., Shenkin, A., & Sobotka, L. (2016). Defining malnutrition: A plea to rethink. Clinical Nutrition, 36(3), 896-901. doi:10.1016/j.clnu.2016.09.032

Wang, Y., Ou, Y. L., Liu, Y. Q., Xie, Q., Liu, Q. F., Wu, Q., Fan, T. Q., Yan, L. L., & Wang, J. Y. (2012). Correlations of trace element levels in the diet, blood, urine, and feces in the Chinese male. Biological Trace Element Research, 145(2), 127-135. doi:10.1007/s12011-011-9177-8

WHO. (2000). Nutrition for health and development: A global agenda for combating malnutrition. Geneva: World Health Organization.

WHO. (2004). Guidelines for drinking-water quality. Malta: Gutenberg, pp. 564.

Downloads

Published

2020-05-28

How to Cite

Vargas-González, H. H. ., Arreola-Lizárraga, J. A. ., Méndez-Rodríguez, L. C. ., Gaxiola-Robles, R. ., García-Hernández, J. ., & Alvarez-Castañeda, S. T. . (2020). Effect of aquaculture-agriculture sewage on the relation between iron and other trace element content in Venus clam from the coastal lagoons of the Gulf of California. Maritime Technology and Research, 2(4), 231–242. https://doi.org/10.33175/mtr.2020.241229