Bangkok port and coastal regions of Thailand under atmospheric PM2.5 pollution: A hypothetical nuclear power plant accident

Authors

  • Wonlee Nounmusig Faculty of International Maritime Studies, Kasetsart University, Si Racha, Chonburi 20230, Thailand

DOI:

https://doi.org/10.33175/mtr.2023.264402

Keywords:

Bangkok port, Atmospheric transport, Aerosol, HYSPLIT trajectory

Abstract

The atmospheric transport pathways of 1) a hypothetical accident of aerosol at Ninh Thuan Nuclear Power Plant (NPP) in Vietnam to the coastal area of Thailand and 2) the source of PM2.5 near the area of Bangkok port were selected for case studies. The overviews of atmospheric transport patterns were analyzed using the long-term mean wind and the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model for simulating the transport pathway. The results found that the possible pathway of aerosol from Ninh Thuan NPP to coastal regions of Thailand was present over the entire year, except for the southwest monsoon month. The percentage of aerosol transport reaching the coast of Thailand is highest in the southern coastal part, found in January-April and October-December, with a maximum in January (approximately 84 %). For PM2.5 pollutants on a poor day, strongly positive and negative significant relationships with relative humidity (RH) (r = 0.44, rs = 0.46) and wind speed (r = -0.46, rs = -0.47) were found, respectively. The concentration of PM2.5 is slightly negatively correlated with wind direction. In addition, the upper air transport may bring PM2.5 pollutants from neighboring provinces or Southeast Asia to Bangkok port, Thailand, which appeared in anticyclone form in the upper atmosphere before the day which exceeded the safety level of PM2.5.

------------------------------------------------------------------------------
Cite this article: Nounmusig, W. (2023). Bangkok port and coastal regions of Thailand under atmospheric PM2.5 pollution: A hypothetical nuclear power plant accident. Maritime Technology and Research, 5(4), 264402. https://doi.org/10.33175/mtr.2023.264402
------------------------------------------------------------------------------

Highlights

  • The possible pathway of aerosol from Ninh Thuan NPP to coastal regions of Thailand is present over the entire year
  • The percentage of aerosol transport from Ninh Thuan NPP reaching the coast of Thailand is highest in the southern coastal part during the northeast monsoon
  • The exceeding air pollution problem in Bangkok comes from unfavorable meteorological conditions
  • The anticyclone center in the upper atmosphere of Vietnam, Laos, and Cambodia formed before the day, which exceeded the safety level at a poor level

References

Amnuaylojaroen, T., Inkom, J., Janta, R., & Surapipith, V. (2020). Long range transport of Southeast Asian PM2.5 pollution to Northern Thailand during high biomass burning episodes. Sustainability, 12(23), 10049. https://doi.org/10.3390/su122310049

APERC. (2017). Nuclear power generation in Asia-Pacific-Current policies and future perspectives. Retrieved from http://aperc.ieej.or.jp

Appleyard, D. (2022). Vietnam may reconsider nuclear power. Nuclear Engineering International Retrieved from https://www.neimagazine.com/news/newsvietnam-may-reconsider-nuclear-power-9759585

AQI. (2023). Bangkok Air Quality Index (AQI). Retrieved from https://www.aqi.in/dashboard/thailand/krung-thep-maha-nakhon/bangkok

ASMC. (2023). Hotspot information. Retrieved from http://asmc.asean.org/asmc-heatmap#Hotspot

Athar, Y. H., & Faghihi, F. (2019). Dose dispersion map using the fall-out stack model of the HYSPLIT code for a pool-type 5 MW research reactor under normal operation. Radiation Physics and Chemistry, 165, 108412. https://doi.org/10.1016/j.radphyschem.2019.108412

Bran, S. H., Macatangay, R., Surapipith, V., Chotamonsak, C., Chantara, S., Han, Z., & Li, J. (2022). Surface PM2.5 mass concentrations during the dry season over northern Thailand: Sensitivity to model aerosol chemical schemes and the effects on regional meteorology. Atmospheric Research, 277, 106303. https://doi.org/10.1016/j.atmosres.2022.106303

Chao, C., & Min, B. W. (2021). Correlation analysis of atmospheric pollutants and meteorological factors based on environmental big data. International Journal of Contents, 18(1), 17-22. https://doi.org/10.5392/IJoC.2022.18.1.017

Draxler, R., Arnold, D., Chino, M., Galmarini, S., Hort, M., Jones, A., Susan Leadbetter, Malo, A., Maurer, C., Rolph, G., Saito, K., Servranckx, R., Shimbori, T., Solazzo, E., & Wotawa, G. (2015). World Meteorological Organization's model simulations of the radionuclide dispersion and deposition from the Fukushima Daiichi nuclear power plant accident. Journal of Environmental Radioactivity, 139, 172-184. https://doi.org/10.1016/j.jenvrad.2013.09.014

Environment Department. (2023). Integrates all sectors to solve PM2.5 problems in Bangkok. Retrieved from https://webportal.bangkok.go.th/environmentbma

Kim, C. K., Byun, J. I., Chae, J. S., Choi, H. Y., Choi, S. W., Kim, D. J., Kim, Y. J., Lee, D. M., Park, W. J., Yim, S. A., & Yun, J. Y. (2012). Radiological impact in Korea following the Fukushima nuclear accident. Journal of Environmental Radioactivity, 111, 70-82. http://dx.doi.org/10.1016/j.jenvrad.2011.10.018

Lee, K. H., Kim, K. H., Lee, J. H., Yun, J. Y., & Kim, C. H. (2015). Modeling of long range transport pathways for radionuclides to Korea during the Fukushima Dai-ichi nuclear accident and their association with meteorological circulations. Journal of Environmental Radioactivity, 148, 80-91. https://doi.org/10.1016/j.jenvrad.2015.06.007

Leelőssy, Á., Mészáros, R., & Lagzi, I. (2011). Short and long term dispersion patterns of radionuclides in the atmosphere around the Fukushima Nuclear Power Plant. Journal of Environmental Radioactivity, 102(12), 1117-1121. http://dx.doi.org/10.1016/j.jenvrad.2011.07.010

Liu, Y., Zhou, Y., & Lu, J. (2020). Exploring the relationship between air pollution and meteorological conditions in China under environmental governance. Scientific Reports, 10(1), 14518. http://dx.doi.org/10.1038/s41598-020-71338-7

Long, N. Q., Truong, Y., Hien, P. D., Binh, N. T., Sieu, L. N., Giap, T. V., & Phan, N. T. (2012). Atmospheric radionuclides from the Fukushima Dai-ichi nuclear reactor accident observed in Vietnam. Journal of Environmental Radioactivity, 111, 53-58. https://doi.org/10.1016/j.jenvrad.2011.11.018

Ma, Y., Zhao, H., & Wei, X. (2022). Changes of air pollutants and simulation of a heavy pollution process during COVID-19 in Shenyang. Environmental Monitoring and Assessment, 194(10), 723. https://doi.org/10.1007/s10661-022-10359-3

McAleer, P. (2022). A handy workbook for research methods & statistics. Zenodo: CERN Data Centre & Invenio. https://doi.org/10.5281/zenodo.5934243

Mueller, D., Uibel, S., Takemura, M., Klingelhoefer, D., & Groneberg, D. A. (2011). Ships, ports and particulate air pollution: An analysis of recent studies. Journal of Occupational Medicine and Toxicology, 6(1), 31. https://doi.org/10.1186/1745-6673-6-31

Nguyen, L. S. P., Chang, J. H. W., Griffith, S. M., Hien, T. T., Kong, S. S. K., Le, H. N., Huang, H. Y., Sheu, G. R., & Lin, N. H. (2022). Trans-boundary air pollution in a Southeast Asian megacity: Case studies of the synoptic meteorological mechanisms and impacts on air quality. Atmospheric Pollution Research, 13(4), 101366. https://doi.org/10.1016/j.apr.2022.101366

NOAA-ARL. (2022). Hysplit - Hybrid single particle lagrangian integrated trajectory model. Retrieved from http://www.arl.noaa.gov/HYSPLIT_info.php

OpenStreetMap. (2022). Windy. Retrieved from https://www.windy.com/th/-%E0%B9%80%E0%B8%A1%E0%B8%99%E0%B8%B9/tools?cams,pm2p5,16.791,119.531,4

PCD. (2022). Air4Thai. Retrieved from http://air4thai.pcd.go.th/webV3/#/StationDetail

Pirouzmand, A., Kowsar, Z., & Dehghani, P. (2018). Atmospheric dispersion assessment of radioactive materials during severe accident conditions for Bushehr nuclear power plant using HYSPLIT code. Progress in Nuclear Energy, 108, 169-178. https://doi.org/10.1016/j.pnucene.2018.05.015

Punsompong, P., Pani, S. K., Wang, S.-H., & Bich Pham, T. T. (2021). Assessment of biomass-burning types and transport over Thailand and the associated health risks. Atmospheric Environment, 247, 118176. https://doi.org/10.1016/j.atmosenv.2020.118176

Qi, X., Mei, G., Cuomo, S., Liu, C., & Xu, N. (2021). Data analysis and mining of the correlations between meteorological conditions and air quality: A case study in Beijing. Internet of Things, 14, 100127. https://doi.org/10.1016/j.iot.2019.100127

Reid, J., Hyer, E., Johnson, R., Holben, B., Yokelson, R., Zhang, J., Campbell, J. R., Christopher, S. A., Girolamo, L. D., Giglio, L., Holz, R. E., Kearney, C., Miettinen, J., Reid, E. A., Turk, F. J., Wang, J., Xian, P., Zhao, G., Balasubramanian, R., Chew, B. N., . . . Liew, S. C. (2013). Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program. Atmospheric Research, 122, 403-468. https://doi.org/10.1016/j.atmosres.2012.06.005

Skrynyk, O., Voloshchuk, V., Budak, I., & Bubin, S. (2019). Regional HYSPLIT simulation of atmospheric transport and deposition of the Chernobyl 137Cs releases. Atmospheric Pollution Research, 10(6), 1953-1963. https://doi.org/10.1016/j.apr.2019.09.001

Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., & Ngan, F. (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12), 2059-2077. https://doi.org/10.1175/BAMS-D-14-00110.1

Steinhauser, G., Brandl, A., & Johnson, T. E. (2014). Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts. Science of The Total Environment, 470-471, 800-817. http://dx.doi.org/10.1016/j.scitotenv.2013.10.029

TMD. (2023). Weather charts. Retrieved from https://www.tmd.go.th/en/supportData/synopticChartsEn

Wang, Q., & Li, X. (2022). Correlation analysis between meteorological factors and pollutants based on Copula Theory. Journal of Physics: Conference Series, 2168(1), 012028. https://doi.org/10.1088/1742-6596/2168/1/012028

Wylie, H. (2021). Atmospheric dispersion and pollution transport. Air Quality Blog. https://airquality.climate.ncsu.edu/2021/06/06/atmospheric-dispersion-and-pollution-transport.

Zali, A., Shamsaei Zafarghandi, M., Feghhi, S. A., & Taherian, A. M. (2017). Public member dose assessment of Bushehr Nuclear Power Plant under normal operation by modeling the fallout from stack using the HYSPLIT atmospheric dispersion model. Journal of Environmental Radioactivity, 171, 1-8. https://doi.org/10.1016/j.jenvrad.2017.01.025

Downloads

Published

2023-05-07