Occurrence of microplastics (MPs) in Antarctica and its impact on the health of organisms


  • Laxmi Kant Bhardwaj Amity Institute of Environmental Toxicology, Safety, and Management, Amity University, Noida, Uttar Pradesh 201303, India




South Polar Region, Antarctica, Microplastics (MPs), Density Separation, Fourier-Transform Infrared Spectroscopy (FTIR)


Antarctica, and its surrounding environment, is considered untouched, and it is thought that it is free from microplastic (MP) pollution. However, recent studies and science projects have reported MPs in both water and sediment in the South Polar Regions. These reports state that MP pollution occurs in this region due to fishing, tourism, and research activities by the nearby countries, with natural circulation also part of it. The Antarctic Treaty System (ATS) has given attention to MP pollution and has initiated research on it. MPs are tiny plastic particles with a size of less than 5 mm. They have two types: 1. Primary MPs, which have been manufactured directly from various applications like cosmetics and scrubbing, etc. 2. Secondary MPs, which are generated by the photochemical degradation of large plastics. Although several studies have been done, there is a quite gap in our understanding of the concentration, characteristics, and impact of plastics on the ecosystem of the Antarctic Region. The impact of MP pollution in this region may be very high. The presence of MPs is a serious issue that is affecting not only the aquatic environment but also humans. It is an alarming situation that causes environmental damage. The main objective of this paper is to review MP introduction, occurrence in biotic and abiotic components, sources, harmful effects, and detection methods/techniques. This review highlights the various methodologies and analyses like density separation, microscope observation of MP’s properties Fourier-transform infrared spectroscopy (FTIR), and Raman spectrometer, respectively, and urges for more research in the future, giving several recommendations to maintain the pristine region near Antarctica.


  • Antarctica is a pristine land and is separated from other continents
  • Microplastics (MPs) are ubiquitous in nature with a size of < 5 mm
  • These tiny particles are of two types primary MPs and secondary MPs
  • MP pollution occurs in the Antarctic region due to fishing, tourism, and research activities
  • MPs may be carcinogenic and act as endocrine disruptors in nature


Abreu, A., & Pedrotti, M. L. (2019). Microplastics in the oceans: The solutions lie on land. Field Actions Science Reports, 19, 62-67.

Absher, T. M., Ferreira, S. L., Kern, Y., Ferreira, A. L., Christo, S. W., & Ando, R. A. (2019). Incidence and identification of microfibers in ocean waters in Admiralty Bay, Antarctica. Environmental Science and Pollution Research, 26, 292-298. https://doi.org/10.1007/s11356-018-3509-6

Andrady, A. L., Barnes, P. W., Bornman, J. F., Gouin, T., Madronich, S., White, C. C., Zepp, R. G., & Jansen, M. A. K. (2022). Oxidation and fragmentation of plastics in a changing environment: From UV-radiation to biological degradation. Science of The Total Environment, 851, 158022. https://doi.org/10.1016/j.scitotenv.2022.158022

Aves, A. R., Revell, L. E., Gaw, S., Ruffell, H., Schuddeboom, A., Wotherspoon, N. E., LaRue, M., & McDonald, A. J. (2022). First evidence of microplastics in Antarctic snow. The Cryosphere, 16(6), 2127-2145. https://doi.org/10.5194/tc-16-2127-2022

Barnes, D. K., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985-1998. https://doi.org/10.1098/rstb.2008.0205

Barrows, A. P., Neumann, C. A., Berger, M. L., & Shaw, S. D. (2017). Grab vs. neuston tow net: A microplastic sampling performance comparison and possible advances in the field. Analytical Methods, 9(9), 1446-1453. https://doi.org/10.1039/C6AY02387H

Bergami, E., Rota, E., Caruso, T., Birarda, G., Vaccari, L., & Corsi, I. (2020). Plastics everywhere: First evidence of polystyrene fragments inside the common Antarctic collembolan Cryptopygus antarcticus. Biology letters, 16(6), 20200093. https://doi.org/10.1098/rsbl.2020.0093

Bergmann, M., Gutow, L., & Klages, M. (2015). Marine anthropogenic litter (pp. 1-447). Springer Nature. https://doi.org/10.1007/978-3-319-16510-3

Bessa, F., Ratcliffe, N., Otero, V., Sobral, P., Marques, J. C., Waluda, C. M., Trathan, P. N., & Xavier, J. C. (2019). Microplastics in gentoo penguins from the Antarctic region. Scientific Reports, 9(1), 14191. https://doi.org/10.1038/s41598-019-50621-2

Bhardwaj, L. K. (2022). Evaluation of bis (2-ethylhexyl) phthalate (DEHP) in the PET bottled mineral water of different brands and impact of heat by GC-MS/MS. Chemistry Africa, 5(4), 929-942. https://doi.org/10.1007/s42250-022-00385-6

Bhardwaj, L. K., & Jindal, T. (2020). Persistent organic pollutants in lakes of Grovnes Peninsula at Larsemann Hill area, East Antarctica. Earth Systems and Environment, 4, 349-358. https://doi.org/10.1007/s41748-020-00154-w

Bhardwaj, L. K., & Jindal, T. (2022a). Evaluation of coliform and faecal coliform bacteria in the lakes of Broknes and Grovnes Peninsula, East Antarctica. Nature Environment & Pollution Technology, 21(5), 2025-2034. https://doi.org/10.46488/NEPT.2022.v21i05.002

Bhardwaj, L. K., & Sharma, A. (2021a). Estimation of physico-chemical, trace metals, microbiological and phthalate in PET bottled water. Chemistry Africa, 4(4), 981-991. https://doi.org/10.1007/s42250-021-00267-3

Bhardwaj, L. K., & Sharma, A. (2021b). Microplastics (MPs) in drinking water: Uses, sources & transport. Preprints, 2021, 2021040498. https://doi.org/10.20944/preprints202104.0498.v1

Bhardwaj, L. K., Sharma, S., & Jindal, T. (2021). Occurrence of polycyclic aromatic hydrocarbons (PAHs) in the lake water at Grovnes Peninsula Over East Antarctica. Chemistry Africa, 4, 965-980. https://doi.org/10.1007/s42250-021-00278-0

Bhardwaj, L. K., Sharma, S., & Jindal, T. (2023). Estimation of physico-chemical and heavy metals in the lakes of Grovnes & Broknes Peninsula, Larsemann Hill, East Antarctica. Chemistry Africa, 6, 2677-2694. https://doi.org/10.1007/s42250-023-00668-6

Bhardwaj, L., & Jindal, T. (2019). Contamination of Lakes in Broknes peninsula, East Antarctica through the Pesticides and PAHs. Asian-Journal of Chemistry, 31(7), 1574-1580. https://doi.org/10.14233/ajchem.2019.22022

Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of microplastic on shorelines worldwide: Sources and sinks. Environmental Science & Technology, 45(21), 9175-9179. https://doi.org/10.1021/es201811s

Cabernard, L., Roscher, L., Lorenz, C., Gerdts, G., & Primpke, S. (2018). Comparison of Raman and Fourier transform infrared spectroscopy for the quantification of microplastics in the aquatic environment. Environmental Science & Technology, 52(22), 13279-13288. https://doi.org/10.1021/acs.est.8b03438

Caruso, G., Bergami, E., Singh, N., & Corsi, I. (2022). Plastic occurrence, sources, and impacts in Antarctic environment and biota. Water Biology and Security, 1(2), 100034. https://doi.org/10.1016/j.watbs.2022.100034

Chen, Q., Reisser, J., Cunsolo, S., Kwadijk, C., Kotterman, M., Proietti, M., Slat, B., Ferrari, F. F., Schwarz, A., Levivier, A., Yin, D., & Hollert, H., & Koelmans, A. A. (2018). Pollutants in plastics within the North Pacific subtropical gyre. Environmental Science & Technology, 52(2), 446-456. https://doi.org/10.1021/acs.est.7b04682

Cincinelli, A., Scopetani, C., Chelazzi, D., Lombardini, E., Martellini, T., Katsoyiannis, A., Fossi, M. C., & Corsolini, S. (2017). Microplastic in the surface waters of the Ross Sea (Antarctica): Occurrence, distribution and characterization by FTIR. Chemosphere, 175, 391-400. https://doi.org/10.1016/j.chemosphere.2017.02.024

Claessens, M., Van Cauwenberghe, L., Vandegehuchte, M. B., & Janssen, C. R. (2013). New techniques for the detection of microplastics in sediments and field collected organisms. Marine Pollution Bulletin, 70(1-2), 227-233. https://doi.org/10.1016/j.marpolbul.2013.03.009

Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., & Galloway, T. S. (2013). Microplastic ingestion by zooplankton. Environmental Science & Technology, 47(12), 6646-6655. https://doi.org/10.1021/es400663f

Coppock, R. L., Cole, M., Lindeque, P. K., Queirós, A. M., & Galloway, T. S. (2017). A small-scale, portable method for extracting microplastics from marine sediments. Environmental Pollution, 230, 829-837. https://doi.org/10.1016/j.envpol.2017.07.017

Corradini, F., Bartholomeus, H., Lwanga, E. H., Gertsen, H., & Geissen, V. (2019). Predicting soil microplastic concentration using vis-NIR spectroscopy. Science of the Total Environment, 650, 922-932. https://doi.org/10.1016/j.scitotenv.2018.09.101

Cowger, W., Booth, A. M., Hamilton, B. M., Thaysen, C., Primpke, S., Munno, K., Lusher, A. L., Dehaut, A., Vaz, V. P., Liboiron, M., Devriese, L. I., Hermabessiere, L., Rochman, C., Athey, S. N., Lynch, J. M., Frond, H. D., Gray, A., Jones, O. A. H., Brander, S., Steele, C., Moore, S., Sanchez, A., & Nel, H. (2020). Reporting guidelines to increase the reproducibility and comparability of research on microplastics. Applied Spectroscopy, 74(9), 1066-1077. https://doi.org/10.1177/0003702820930292

Cózar, A., Echevarría, F., González-Gordillo, J. I., Irigoien, X., Úbeda, B., Hernández-León, S., Palma, A. T., Navarro, S., García-de-Lomas, J., Ruiz, A., Fernández-de-Puelles, M. L., & Duarte, C. M. (2014). Plastic debris in the open ocean. Proceedings of the National Academy of Sciences, 111(28), 10239-10244. https://doi.org/10.1073/pnas.1314705111

Crawford, C. B., & Quinn, B. (2017). Microplastic collection techniques (pp. 179-202). Microplastic Pollutants, Elsevier. https://doi.org/10.1016/B978-0-12-809406-8.00008-6

Cunningham, E. M., Ehlers, S. M., Dick, J. T., Sigwart, J. D., Linse, K., Dick, J. J., & Kiriakoulakis, K. (2020). High abundances of microplastic pollution in deep-sea sediments: Evidence from Antarctica and the Southern Ocean. Environmental Science & Technology, 54(21), 13661-13671. https://doi.org/10.1021/acs.est.0c03441

da Costa, J. P., Santos, P. S., Duarte, A. C., & Rocha-Santos, T. (2016). (Nano) plastics in the environment–sources, fates and effects. Science of the Total Environment, 566, 15-26. https://doi.org/10.1016/j.scitotenv.2016.05.041

Dawson, A. L., Kawaguchi, S., King, C. K., Townsend, K. A., King, R., Huston, W. M., & Bengtson Nash, S. M. (2018). Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nature Communications, 9(1), 1001. https://doi.org/10.1038/s41467-018-03465-9

do Sul, J. A. I., Barnes, D. K., Costa, M. F., Convey, P., Costa, E. S., & Campos, L. S. (2011). Plastics in the Antarctic environment: Are we looking only at the tip of the iceberg? Oecologia Australis, 15(1), 150-170. https://doi.org/10.4257/oeco.2011.1501.11

Eriksen, M., Lebreton, L. C., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., Galgani, F., & Ryan, P. G., & Reisser, J. (2014). Plastic pollution in the world's oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PloS One, 9(12), e111913. https://doi.org/10.1371/journal.pone.0111913

Eriksson, C., & Burton, H. (2003). Origins and biological accumulation of small plastic particles in fur seals from Macquarie Island. AMBIO: A Journal of the Human Environment, 32(6), 380-384. https://doi.org/10.1579/0044-7447-32.6.380

Europe, P. (2015). An analysis of European plastics production, demand and waste data (pp. 1-147). Plastics the Facts, Plastics Europe.

Fragão, J., Bessa, F., Otero, V., Barbosa, A., Sobral, P., Waluda, C. M., Guímaro, H. R., & Xavier, J. C. (2021). Microplastics and other anthropogenic particles in Antarctica: Using penguins as biological samplers. Science of The Total Environment, 788, 147698. https://doi.org/10.1016/j.scitotenv.2021.147698

Fraser, C. I., Morrison, A. K., Hogg, A. M., Macaya, E. C., van Sebille, E., Ryan, P. G., Padovan, A., Jack, C., Valdivia, N., & Waters, J. M. (2018). Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nature Climate Change, 8(8), 704-708. https://doi.org/10.1038/s41558-018-0209-7

Fu, W., Min, J., Jiang, W., Li, Y., & Zhang, W. (2020). Separation, characterization and identification of microplastics and nanoplastics in the environment. Science of the Total Environment, 721, 137561. https://doi.org/10.1016/j.scitotenv.2020.137561

Gall, S. C., & Thompson, R. C. (2015). The impact of debris on marine life. Marine Pollution Bulletin, 92(1-2), 170-179. https://doi.org/10.1016/j.marpolbul.2014.12.041

González-Pleiter, M., Edo, C., Velázquez, D., Casero-Chamorro, M. C., Leganés, F., Quesada, A., Fernández-Piñas, F., & Rosal, R. (2020). First detection of microplastics in the freshwater of an Antarctic Specially Protected Area. Marine Pollution Bulletin, 161, 111811. https://doi.org/10.1016/j.marpolbul.2020.111811

González-Pleiter, M., Lacerot, G., Edo, C., Pablo Lozoya, J., Leganés, F., Fernández-Piñas, F., Rosal, R., & Teixeira-de-Mello, F. (2021). A pilot study about microplastics and mesoplastics in an Antarctic glacier. The Cryosphere, 15(6), 2531-2539. https://doi.org/10.5194/tc-15-2531-2021

Gröndahl, F., Sidenmark, J., & Thomsen1, A. (2009). Survey of waste water disposal practices at Antarctic research stations. Polar Research, 28(2), 298-306. https://doi.org/10.1111/j.1751-8369.2008.00056.x

Habib, S., Iruthayam, A., Abd Shukor, M. Y., Alias, S. A., Smykla, J., & Yasid, N. A. (2020). Biodeterioration of untreated polypropylene microplastic particles by Antarctic bacteria. Polymers, 12(11), 2616. https://doi.org/10.3390/polym12112616

Hammer, J., Kraak, M. H., & Parsons, J. R. (2012). Plastics in the marine environment: The dark side of a modern gift. Reviews of Environmental Contamination and Toxicology, 220, 1-44. https://doi.org/10.1007/978-1-4614-3414-6_1

Harper, P. C., & Fowler, J. C. (1987). Plastic pellets in New Zealand storm-killed prions (Pachyptila spp.). Notornis, 34(1), 65-70.

Isobe, A., Uchiyama-Matsumoto, K., Uchida, K., & Tokai, T. (2017). Microplastics in the southern ocean. Marine Pollution Bulletin, 114(1), 623-626. https://doi.org/10.1016/j.marpolbul.2016.09.037

Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771. https://doi.org/10.1126/science.1260352

Jones-Williams, K., Galloway, T., Cole, M., Stowasser, G., Waluda, C., & Manno, C. (2020). Close encounters-microplastic availability to pelagic amphipods in sub-antarctic and antarctic surface waters. Environment International, 140, 105792. https://doi.org/10.1016/j.envint.2020.105792

Kelly, A., Lannuzel, D., Rodemann, T., Meiners, K. M., & Auman, H. J. (2020). Microplastic contamination in east Antarctic sea ice. Marine Pollution Bulletin, 154, 111130. https://doi.org/10.1016/j.marpolbul.2020.111130

Kozak, E. R., Franco-Gordo, C., Mendoza-Pérez, J., Sánchez-Nuño, N., Martínez-Sánchez, X. A., Melo-Agustín, P., Pelayo-Martínez, G., & Gómez-Gutiérrez, J. (2021). Surface layer microplastic pollution in four bays of the central Mexican Pacific. Marine Pollution Bulletin, 169, 112537. https://doi.org/10.1016/j.marpolbul.2021.112537

Kusch, P. (2014). Identification of synthetic polymers and copolymers by analytical pyrolysis-gas chromatography/mass spectrometry. Journal of Chemical Education, 91(10), 1725-1728. https://doi.org/10.1021/ed5002027

Lacerda, A. L. D. F., Rodrigues, L. D. S., Van Sebille, E., Rodrigues, F. L., Ribeiro, L., Secchi, E. R., Kessler, F., & Proietti, M. C. (2019). Plastics in sea surface waters around the Antarctic Peninsula. Scientific Reports, 9(1), 3977. https://doi.org/10.1038/s41598-019-40311-4

Lasee, S., Mauricio, J., Thompson, W. A., Karnjanapiboonwong, A., Kasumba, J., Subbiah, S., Morse, A. N., & Anderson, T. A. (2017). Microplastics in a freshwater environment receiving treated wastewater effluent. Integrated Environmental Assessment and Management, 13(3), 528-532. https://doi.org/10.1002/ieam.1915

Le Guen, C., Suaria, G., Sherley, R. B., Ryan, P. G., Aliani, S., Boehme, L., & Brierley, A. S. (2020). Microplastic study reveals the presence of natural and synthetic fibres in the diet of King Penguins (Aptenodytes patagonicus) foraging from South Georgia. Environment International, 134, 105303. https://doi.org/10.1016/j.envint.2019.105303

Lee, J., Hong, S., Song, Y. K., Hong, S. H., Jang, Y. C., Jang, M., Heo, N. W., Han, G. M., Lee, M. J., Kang, D., & Shim, W. J. (2013). Relationships among the abundances of plastic debris in different size classes on beaches in South Korea. Marine Pollution Bulletin, 77(1-2), 349-354. https://doi.org/10.1016/j.marpolbul.2013.08.013

Leistenschneider, C., Burkhardt-Holm, P., Mani, T., Primpke, S., Taubner, H., & Gerdts, G. (2021). Microplastics in the Weddell Sea (Antarctica): A forensic approach for discrimination between environmental and vessel-induced microplastics. Environmental Science & Technology, 55(23), 15900-15911. https://doi.org/10.1021/acs.est.1c05207

Leslie, H. A. (2015). Plastic in Cosmetics: Are we polluting the environment through our personal care? Plastic ingredients that contribute to marine microplastic litter. Retrieved from https://wedocs.unep.org/bitstream/handle/20.500.11822/9664/-Plastic_in_cosmetics_Are_we_polluting_the_environment_through_our_personal_care_-2015Plas.pdf?sequence=3&isAllowed=y

Li, W. C., Tse, H. F., & Fok, L. (2016). Plastic waste in the marine environment: A review of sources, occurrence and effects. Science of the Total Environment, 566, 333-349. https://doi.org/10.1016/j.scitotenv.2016.05.084

Long, Z., Pan, Z., Wang, W., Ren, J., Yu, X., Lin, L., Lin, H., Chen, H., & Jin, X. (2019). Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China. Water Research, 155, 255-265. https://doi.org/10.1016/j.watres.2019.02.028

Lusher, A. L., Bråte, I. L. N., Munno, K., Hurley, R. R., & Welden, N. A. (2020). Is it or isn't it: The importance of visual classification in microplastic characterization. Applied Spectroscopy, 74(9), 1139-1153. https://doi.org/10.1177/0003702820930733

Maes, T., Jessop, R., Wellner, N., Haupt, K., & Mayes, A. G. (2017). A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Scientific Reports, 7(1), 44501. https://doi.org/10.1038/srep44501

Martí, E., Martin, C., Galli, M., Echevarría, F., Duarte, C. M., & Cózar, A. (2020). The colors of the ocean plastics. Environmental Science & Technology, 54(11), 6594-6601. https://doi.org/10.1021/acs.est.9b06400

Masura, J., Baker, J., Foster, G., & Arthur, C. (2015). Laboratory Methods for the Analysis of Microplastics in the Marine Environment: Recommendations for quantifying synthetic particles in waters and sediments (pp. 1-31). NOAA Marine Debris Division.

Materić, D., Kjær, H. A., Vallelonga, P., Tison, J. L., Röckmann, T., & Holzinger, R. (2022). Nanoplastics measurements in Northern and Southern polar ice. Environmental Research, 208, 112741. https://doi.org/10.1016/j.envres.2022.112741

Mathalon, A., & Hill, P. (2014). Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Marine Pollution Bulletin, 81(1), 69-79. https://doi.org/10.1016/j.marpolbul.2014.02.018

Morais, L. M. S., Sarti, F., Chelazzi, D., Cincinelli, A., Giarrizzo, T., & Martinelli Filho, J. E. (2020). The sea anemone Bunodosoma cangicum as a potential biomonitor for microplastics contamination on the Brazilian Amazon coast. Environmental Pollution, 265, 114817. https://doi.org/10.1016/j.envpol.2020.114817

Munari, C., Infantini, V., Scoponi, M., Rastelli, E., Corinaldesi, C., & Mistri, M. (2017). Microplastics in the sediments of terra nova bay (ross sea, Antarctica). Marine Pollution Bulletin, 122(1-2), 161-165. https://doi.org/10.1016/j.marpolbul.2017.06.039

Nerland, I. L., Halsband, C., Allan, I., & Thomas, K. V. (2014). Microplastics in marine environments: Occurrence, distribution and effects (pp. 1-72). Norwegian Institute for Water Research.

Obbard, R. W. (2018). Microplastics in polar regions: The role of long range transport. Current Opinion in Environmental Science & Health, 1, 24-29. https://doi.org/10.1016/j.coesh.2017.10.004

Pakhomova, S., Zhdanov, I., & van Bavel, B. (2020). Polymer type identification of marine plastic litter using a miniature near-infrared spectrometer (MicroNIR). Applied Sciences, 10(23), 8707. https://doi.org/10.3390/app10238707

Paul, A., Wander, L., Becker, R., Goedecke, C., & Braun, U. (2019). High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil. Environmental Science and Pollution Research, 26, 7364-7374. https://doi.org/10.1007/s11356-018-2180-2

Peez, N., & Imhof, W. (2020). Quantitative 1 H-NMR spectroscopy as an efficient method for identification and quantification of PVC, ABS and PA microparticles. Analyst, 145(15), 5363-5371. https://doi.org/10.1039/D0AN00879F

Peez, N., Becker, J., Ehlers, S. M., Fritz, M., Fischer, C. B., Koop, J. H. E., Winkelmann, C., & Imhof, W. (2019). Quantitative analysis of PET microplastics in environmental model samples using quantitative 1 H-NMR spectroscopy: Validation of an optimized and consistent sample clean-up method. Analytical and Bioanalytical Chemistry, 411, 7409-7418. https://doi.org/10.1007/s00216-019-02089-2

Perfetti-Bolaño, A., Araneda, A., Muñoz, K., & Barra, R. O. (2022). Occurrence and distribution of microplastics in soils and intertidal sediments at Fildes Bay, Maritime Antarctica. Frontiers in Marine Science, 8, 774055. https://doi.org/10.3389/fmars.2021.774055

Phuong, N. N., Zalouk-Vergnoux, A., Poirier, L., Kamari, A., Châtel, A., Mouneyrac, C., & Lagarde, F. (2016). Is there any consistency between the microplastics found in the field and those used in laboratory experiments? Environmental Pollution, 211, 111-123. https://doi.org/10.1016/j.envpol.2015.12.035

Primpke, S., Christiansen, S. H., Cowger, W., De Frond, H., Deshpande, A., Fischer, M., Holland, E. B., Meyns, M., O’Donnell, B. A., Ossmann, B. E., Pittroff, M., Sarau, G., Scholz-Bottcher, B. M., & Wiggin, K. J. (2020). Critical assessment of analytical methods for the harmonized and cost-efficient analysis of microplastics. Applied Spectroscopy, 74(9), 1012-1047. https://doi.org/10.1177/0003702820921465

Quinn, B., Murphy, F., & Ewins, C. (2017). Validation of density separation for the rapid recovery of microplastics from sediment. Analytical Methods, 9(9), 1491-1498. https://doi.org/10.1039/C6AY02542K

Reed, S., Clark, M., Thompson, R., & Hughes, K. A. (2018). Microplastics in marine sediments near Rothera research station, Antarctica. Marine Pollution Bulletin, 133, 460-463. https://doi.org/10.1016/j.marpolbul.2018.05.068

Reisser, J., Shaw, J., Wilcox, C., Hardesty, B. D., Proietti, M., Thums, M., & Pattiaratchi, C. (2013). Marine plastic pollution in waters around Australia: Characteristics, concentrations, and pathways. PloS One, 8(11), e80466. https://doi.org/10.1371/journal.pone.0080466

Rota, E., Bergami, E., Corsi, I., & Bargagli, R. (2022). Macro-and microplastics in the Antarctic environment: Ongoing assessment and perspectives. Environments, 9(7), 93. https://doi.org/10.3390/environments9070093

Ryan, P. G. (2014). Litter survey detects the South Atlantic ‘garbage patch’. Marine Pollution Bulletin, 79(1-2), 220-224. https://doi.org/10.1016/j.marpolbul.2013.12.010

Ryan, P. G., De Bruyn, P. N., & Bester, M. N. (2016). Regional differences in plastic ingestion among Southern Ocean fur seals and albatrosses. Marine Pollution Bulletin, 104(1-2), 207-210. https://doi.org/10.1016/j.marpolbul.2016.01.032

Schymanski, D., Goldbeck, C., Humpf, H. U., & Fürst, P. (2018). Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Research, 129, 154-162. https://doi.org/10.1016/j.watres.2017.11.011

Sfriso, A. A., Tomio, Y., Rosso, B., Gambaro, A., Sfriso, A., Corami, F., Rastelli, E., Corinaldesi, C., Mistri, M., & Munari, C. (2020). Microplastic accumulation in benthic invertebrates in Terra Nova bay (Ross Sea, Antarctica). Environment International, 137, 105587. https://doi.org/10.1016/j.envint.2020.105587

Sobhani, Z., Al Amin, M., Naidu, R., Megharaj, M., & Fang, C. (2019). Identification and visualisation of microplastics by Raman mapping. Analytica Chimica Acta, 1077, 191-199. https://doi.org/10.1016/j.aca.2019.05.021

Suaria, G., Perold, V., Lee, J. R., Lebouard, F., Aliani, S., & Ryan, P. G. (2020). Floating macro-and microplastics around the Southern Ocean: Results from the Antarctic Circumnavigation Expedition. Environment International, 136, 105494. https://doi.org/10.1016/j.envint.2020.105494

Tian, W., Song, P., Zhang, H., Duan, X., Wei, Y., Wang, H., & Wang, S. (2023). Microplastic materials in the environment: Problem and strategical solutions. Progress in Materials Science, 132, 101035. https://doi.org/10.1016/j.pmatsci.2022.101035

Tirelli, V., Suaria, G., & Lusher, A. L. (2022). Microplastics in polar samples. Handbook of Microplastics in the Environment (pp. 281-322). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-39041-9_4

Tirkey, A., & Upadhyay, L. S. B. (2021). Microplastics: An overview on separation, identification and characterization of microplastics. Marine Pollution Bulletin, 170, 112604. https://doi.org/10.1016/j.marpolbul.2021.112604

Van Cauwenberghe, L., Devriese, L., Galgani, F., Robbens, J., & Janssen, C. R. (2015). Microplastics in sediments: A review of techniques, occurrence and effects. Marine Environmental Research, 111, 5-17. https://doi.org/10.1016/j.marenvres.2015.06.007

Waller, C. L., & Hughes, K. A. (2018). Plastics in the Southern Ocean. Antarctic Science, 30(5), 269-269. https://doi.org/10.1017/S0954102018000330

Waller, C. L., Griffiths, H. J., Waluda, C. M., Thorpe, S. E., Loaiza, I., Moreno, B., Pacherres, C. O., & Hughes, K. A. (2017). Microplastics in the Antarctic marine system: An emerging area of research. Science of the Total Environment, 598, 220-227. https://doi.org/10.1016/j.scitotenv.2017.03.283

Watts, A. J., Lewis, C., Goodhead, R. M., Beckett, S. J., Moger, J., Tyler, C. R., & Galloway, T. S. (2014). Uptake and retention of microplastics by the shore crab Carcinus maenas. Environmental Science & Technology, 48(15), 8823-8830. https://doi.org/10.1021/es501090e

Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: A review. Environmental Pollution, 178, 483-492. https://doi.org/10.1016/j.envpol.2013.02.031

Zhu, W., Liu, W., Chen, Y., Liao, K., Yu, W., & Jin, H. (2023). Microplastics in Antarctic krill (Euphausia superba) from Antarctic region. Science of The Total Environment, 870, 161880. https://doi.org/10.1016/j.scitotenv.2023.161880

Ziajahromi, S., Neale, P. A., & Leusch, F. D. (2016). Wastewater treatment plant effluent as a source of microplastics: Review of the fate, chemical interactions and potential risks to aquatic organisms. Water Science and Technology, 74(10), 2253-2269. https://doi.org/10.2166/wst.2016.414




How to Cite

Bhardwaj, L. K. . (2023). Occurrence of microplastics (MPs) in Antarctica and its impact on the health of organisms. Maritime Technology and Research, 6(2), 265418. https://doi.org/10.33175/mtr.2024.265418