Not all that glitters is gold: Glitter causes acute toxicity to nauplii of Artemia sp.

Authors

  • Denis Moledo de Souza Abessa São Paulo State University-UNESP, Biosciences Institute, Praça Infante Dom Henrique, São Vicente, SP 11330-900, Brazil
  • Alexandre Rodrigo Nascimento Gonçalves São Paulo State University-UNESP, Biosciences Institute, Praça Infante Dom Henrique, São Vicente, SP 11330-900, Brazil
  • Maysa Ueda de Carvalho São Paulo State University-UNESP, Biosciences Institute, Praça Infante Dom Henrique, São Vicente, SP 11330-900, Brazil
  • Natalie Spanghero São Paulo State University-UNESP, Biosciences Institute, Praça Infante Dom Henrique, São Vicente, SP 11330-900, Brazil
  • Nathalia Sales Soares do Nascimento São Paulo State University-UNESP, Biosciences Institute, Praça Infante Dom Henrique, São Vicente, SP 11330-900, Brazil
  • Milene Fornari São Paulo State University-UNESP, Biosciences Institute, Praça Infante Dom Henrique, São Vicente, SP 11330-900, Brazil
  • Fernando Cesar Perina University of Aveiro, CESAM-Centre for Environmental and Marine Studies and Department of Biology, Aveiro 3810-193, Portugal
  • Ana Carolina Feitosa Cruz São Paulo State University-UNESP, Biosciences Institute, Praça Infante Dom Henrique, São Vicente, SP 11330-900, Brazil

DOI:

https://doi.org/10.33175/mtr.2024.270722

Keywords:

Marine litter, Marine pollution, Toxicity, Brine shrimp, Microplastics

Abstract

Glitter has been reported as a relevant pollutant, as it is widely used in cosmetic and textile products and craftwork, and often associated with domestic sewage. The particular glitter is composed of thin layers of plastic and metal. This study assessed the acute toxicity of glitter dispersions in the brine shrimp Artemia sp. Nauplii of Artemia sp. that were exposed to glitter dispersions (0.01, 0.1, 1, 10, and 100 mg/L), obtained by diluting a stock solution in seawater; the control consisted of filtered seawater only. Three replicates were used per treatment and consisted of glass tubes filled with 10 mL of the test solution, and ten nauplii aging over 48 h. After 48 h, the survivors were counted and examined under a microscope. The mean size of glitter particles was 3.94 (±0.98) µm; approximately 44 % of particles were in the range of very fine sand, and 27 % coarse silt. Significant lethal effects (p < 0.05) occurred from 0.1 mg/L (Lowest Observed Effect Concentration - LOEC); the lethal concentration to 50 % organisms (LC50-48h) was 0.350 (0.348 - 0.351) mg/L. The exposed organisms also exhibited patches in their digestive tracts, and particles were stranded in their appendices. The results indicate the toxic potential of glitter to brine shrimp. This investigation indicates the need for further studies on the toxicity of glitter to marine invertebrates.

Highlights

  • Glitter includes particles of sizes similar to those of marine microalgae
  • Exposure to glitter suspensions caused toxicity in brine shrimps from 0.1 mg/L
  • The nauplii of Artemia were more sensitive to glitter than echinoderm embryos
  • Metallic parts of the glitter were observed in the digestive tract of the brine shrimp nauplii

References

Abessa, D. M. S., Ortega, A. S. B., Marinsek, G. P., Roselli, L. Y., Chelotti, L. D., & Perina, F. C. (2021). Acute toxicity of cigarette butts leachate on nauplii of Artemia sp. Brazilian Journal of Animal and Environment Research, 4(1), 659-670. https://doi.org/10.34188/bjaerv4n1-055

Abessa, D. M. S., Albanit, L. F., Moura, P. H. P., Nogueira, V. S., Santana, F. T., Fagundes, K., Ueda, M., Muller, O. P. O., & Cesar-Ribeiro, C. (2023). A glow before darkness: Toxicity of glitter particles to marine invertebrates. Toxics, 11(7), 617. https://doi.org/10.3390/toxics11070617

ABNT (Associação Brasileira de Nortmas Técnicas). (2021). ABNT NBR 16530. Ecotoxicologia aquática - Toxicidade aguda - Método de ensaio com Artemia sp. (Crustacea, Brachiopoda). ABNT, Rio de Janeiro. https://www.target.com.br/produtos/normas-tecnicas/44088/nbr16530-ecotoxicologia-aquatica-toxicidade-aguda-metodo-de-ensaio-com-artemia-sp-crustacea-brachiopoda

Albanit, L., Beverari, I., Ribeiro, C. C., Gimiliani, G. T., & Abessa, D. M. S. (2023). Toxicity of glitter to marine organisms: A baseline study with embryos of the sand-dollar Mellita quinquiesperforata. International Aquatic Research, 15(2), 181-189. https://doi.org/10.22034/IAR.2023.1973104.1359

Anbumani, S., & Kakkar, P. (2018). Ecotoxicological effects of microplastics on biota: A review. Environmental Science and Pollution Research, 25(15), 14373-14396. https://doi.org/10.1007/s11356-018-1999-x

Batel, A, Linti, F, Scherer, M, Erdinger, L., & Braunbeck, T. (2016). The transfer of benzo[a]pyrene from microplastics to artemia nauplii and further to zebrafish via a trophic food web experiment - CYP1a induction and visual tracking of persistent organic pollutants. Environmental Toxicology and Chemistry, 35, 1656-1666. https://doi.org/10.1002/etc.3361

Bergami, E., Bocci, E., Vannuccini, M., Monopoli, M., Salvati, A., Dawson, K., & Corsi, I. (2016). Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae. Ecotoxicology and Environmental Safety, 126, 18-25. https://doi.org/10.1016/j.ecoenv.2015.09.021

Bhardwaj, L. K. (2022). Evaluation of Bis (2-ethylhexyl) Phthalate (DEHP) in the PET bottled mineral water of different brands and impact of heat by GC-MS/MS. Chemistry Africa, 5, 929-942. https://doi.org/10.1007/s42250-022-00385-6

Bhardwaj, L. K. (2024). Occurrence of microplastics (MPs) in Antarctica and its impact on the health of organisms. Maritime Technology and Research, 6(2), 265418. https://doi.org/10.33175/mtr.2024.265418

Bhardwaj, L. K., & Sharma, A. (2021). Estimation of physico-chemical, trace metals, microbiological and phthalate in PET bottled water. Chemistry Africa, 4, 981-991. https://doi.org/10.1007/s42250-021-00267-3

Bhardwaj, L. K., Rath, P., Yadav, P., & Gupta, U. (2024). Microplastic contamination, an emerging threat to the freshwater environment: A systematic review. Environmental Systems Research, 13, 8. https://doi.org/10.1186/s40068-024-00338-7

Brede, C., Fjeldal, P., Skjevrak, I., & Herikstad, H. (2003). Increased migration levels of bisphenol A from polycarbonate baby bottles after dishwashing, boiling and brushing. Food Additives and Contaminants, 20, 684-689. https://doi.org/10.1080/0265203031000119061

Campanale, C., Massarelli, C., Savino, I., Locaputo, V., & Uricchio, V. F. (2020). A detailed review study on potential effects of micro-plastics and additives of concern on human health. International Journal of Environmental Research and Public Health, 17, 1212, https://doi.org/10.3390/ijerph17041212

Capolupo, M., Rafiq, A., Coralli, I., Alessandro, T., Valbonesi, P., Fabbri, D., & Fabbri, E. (2023). Bioplastic leachates characterization and impacts on early larval stages and adult mussel cellular, biochemical and physiological responses. Environmental Pollution, 319, 120951, https://doi.org/10.1016/j.envpol.2022.120951

Catarino, A. I., Macchia, V., Sanderson, W. G., Thompson, R. C., & Henry, T. B. (2018). Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environmental Pollution, 237, 675-684. https://doi.org/10.1016/j.envpol.2018.02.069

Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., & Galloway, T. S. (2013). Microplastic ingestion by zooplankton. Environmental Science and Technology, 47, 6646-6655. https://doi.org/10.1021/es400663f

Costa, I. D., Costa, L. P., Oliveira, A. S., Carvalho, C. E. V., & Zalmon, I. (2023). Microplastics in fishes in amazon riverine beaches: Influence of feeding mode and distance to urban settlements. Science of the Total Environment, 863, 160934. http://dx.doi.org/10.1016/j.scitotenv.2022.160934

Coutteau, P., Lavens, P., & Sorgeloos, P. (1990). Baker’s yeast as a potential substitute for live algae in aquaculture diets: Artemia as a case study. Journal of the World Aquaculture Society, 21(1), 1-9. https://doi.org/10.1111/j.1749-7345.1990.tb00947.x

Ekonomou, G., Lolas, A., Castritsi-Catharios, J., Neofitou, C., D Zouganelis, G., Tsiropoulos, N., & Exadactylos, A. (2019). Mortality and effect on growth of Artemia franciscana exposed to two common organic pollutants. Water, 11(8), 1614. https://dx.doi.org/10.3390/w11081614

Frias, J. P. G. L., & Nash, R. (2019). Microplastics: finding a consensus on the definition. Marine Pollution Bulletin, 138, 145-14. https://doi.org/10.1016/j.marpolbul.2018.11.022

Galloway, T. S., Cole, M., & Lewis, C. (2017). Interactions of microplastic debris throughout the marine ecosystem. Nature Ecology and Evolution, 1, 1-8. https://doi.org/10.1038/s41559-017-0116

Gambardella, C., Morgana, S., Ferrando, S., Bramini, M., Piazza, V., Costa, E. & Faimali, M. (2017). Effects of polystyrene microbeads in marine planktonic crustaceans. Ecotoxicology and Environmental Safety, 145, 250-257. https://doi.org/10.1016/j.ecoenv.2017.07.036

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782

Gonçalves, A. R. N., Marinsek, G. P., Abessa, D. M. S., & Mari, R. B. (2020). Adaptative responses of myenteric neurons of Sphoeroides testudineus to environmental pollution. Neuro Toxicology, 76, 84-92. https://doi.org/10.1016/j.neuro.2019.10.008

Green, S. D., Jefferson, M., Boots, B., & Stone, L. (2021). All that glitter is litter? Ecological impacts of conventional versus biodegradable glitter in a freshwater habitat. Journal of Hazardous Materials, 402, 124070. https://doi.org/10.1016/j.jhazmat.2020.124070

Guerranti, C., Martellini, T., Perra, G., Scopetani, C., & Cincinelli, A. (2019). Microplastics in cosmetics: Environmental issues and needs for global bans. Environmental Toxicology and Pharmacology, 68, 75-79. https://doi.org/10.1016/j.etap.2019.03.007

Hurley, R, Woodward, J., & Rothwell, J. J. (2018). Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nature Geoscience, 11(4), 251. https://doi.org/10.1038/s41561-018-0080-1

International Organization for Standardization (ISO). (2020). ISO 13320:2020. Particle size analysis-Laser diffraction methods (pp. 1-59). Geneva: International Organization for Standardization (ISO). Retrieved from https://www.en-standard.eu/bs-iso-13320-2020-particle-size-analysis-laser-diffraction-methods/?gad_source=1&gclid=Cj0KCQiAqsitBhDlARIsAGMR1RjEAwlFqhMFdUcZ7uWHq5wq-eqMT5YvTNu0KSAc6NvEUMtGOJsQbBQaAmGnEALw_wcB

Jung, J., & Park, W. (2015). Acinetobacter species as model microorganisms in environmental microbiology: Current state and perspectives. Applied Microbiology and Biotechnologt, 99(6), 2533-2548. https://doi.org/10.1007/s00253-015-6439-y

Kim, Y. J., Osako, M., & Sakai, S. I. (2006). Leaching characteristics of polybrominated diphenyl ethers (PBDEs) from flame retardant plastics. Chemosphere, 65, 506-513. https://doi.org/10.1016/j.chemosphere.2006.01.019

Lee, K. W., Shim, W. J., Kwon, O. Y., & Kang, J. H. (2013). Size-dependent effects of micro polystyrene particles in marine copepod Tigriopus japonicus. Environmental Science and Technology, 47, 11278-11283. https://doi.org/10.1021/es401932b

Li, J., Liu, H., & Chen, J. P. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, 137, 362-374. https://doi.org/10.1016/j.watres.2017.12.056

Lu, Y., & Yu, J. (2019). A well-established method for the rapid assessment of toxicity using Artemia spp. model (pp. 1-16). Hazardous Wastes. IntechOpen. Retrieved from https://www.intechopen.com/chapters/66508

Lusher, A. L., Welden, N. A., Sobral, P., & Cole, M. (2017a). Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Analytical Methods, 9(9), 1346-1360. https://doi.org/10.1039/C6AY02415G

Lusher, A. L., Hurley, R., Vogelsang, C., Nizzetto, L., & Olsen, M. (2017b). Mapping microplastics in sludge. Norwegian Institute for Water Research, NIVA-report, 7215. Retrieved from http://hdl.handle.net/11250/2493527

Marinsek, G. P., Abessa, D. M. A., Gusso-Choueri, P. K., Choueri, R. B., Gonçalves, A. R. N., Barroso, B. V. D. A., Spuza, G. G., Cestari, M. M., Campos, B. G., & Mari, R. B. (2018). Enteric nervous system analyses: New biomarkers for environmental quality assessment. Marine Pollution Bulletin, 137, 711-722. https://doi.org/10.1016/j.marpolbul.2018.11.015

Mutsuga, M., Kawamura, Y., Sugita-Konishi, Y., Hara-Kudo, Y., Takatori, K., & Tanamoto, K. (2006). Migration of formaldehyde and acetaldehyde into mineral water in polyethylene terephthalate (PET) bottles. Food Additives and Contaminants, 23, 212-218. https://doi.org/10.1080/02652030500398361

Nunes, B. S., Carvalho, F. D., Guilhermino, L. M., & Van Stappen, G. (2006). Use of the genus Artemia in ecotoxicity testing. Environment International, 144, 453-462. https://doi.org/10.1016/j.envpol.2005.12.037

Oren, A. (2014). The ecology of Dunaliella in high-salt environments. Journal of Biological Research (Thessaloniki), 21(1), 23. https://doi.org/10.1186%2Fs40709-014-0023-y

Powell, M. D., & Berry, A. J. (1990). Ingestion and regurgitation of living and inert materials by the estuarine copepod Eurytemora affinis (Poppe) and the influence of salinity. Estuarine Coastal and Shelf Science, 31, 763-773. https://doi.org/10.1016/0272-7714(90)90081-2

Piccardo, M., Provenza, F., Anselmi, S., & Renzi, M. (2022). Ecotoxicological assessment of “glitter” leachates in aquatic ecosystems: An integrated approach. Toxics, 10, 677. https://doi.org/10.3390/toxics10110677

Pramanik, D. D., Lei, S., Kay, P., & Goycoolea, F. M. (2023). Investigating on the toxicity and bio-magnification potential of synthetic glitters on Artemia salina. Marine Pollution Bulletin, 190, 114828. https://doi.org/10.1016/j.marpolbul.2023.114828

Provenza, F., Anselmi, S., Specchiulli, A., Piccardo, M., Barceló, D., Prearo, M., Pastorino, P., & Renzi, M. (2022). Sparkling plastic: Effects of exposure to glitter on the Mediterranean mussel Mytilus galloprovincialis. Environmental Toxicology and Pharmacology, 96, 103994. https://doi.org/10.1016/j.etap.2022.103994

Qu, H., Ma, R., Barrett, H., Wang, B., Han, J., Wang, F., Chen, P., Wang, W., Peng, G., & Yu, G. (2020). How microplastics affect chiral illicit drug methamphetamine in aquatic food chain? From green alga (Chlorella pyrenoidosa) to freshwater snail (Cipangopaludian cathayensis). Environment International, 136, 105480. https://doi.org/10.1016/j.envint.2020.105480

Rochman, C. S., Kross, S. M., Armstrong, J. B., Bogan, M. T., Darling, E. S., Green, S. J., Ashley, R. S., & Veríssimo, D. (2015). Scientific evidence supports a ban on microbeads. Environmental Science and Technology, 49, 10759-10761. https://doi.org/10.1021/acs.est.5b03909

Setälä, O., Fleming-Lehtinen, V., & Lehtiniemi, M. (2014). Ingestion and transfer of microplastics in the planktonic food web. Environmental Pollution, 185, 77-83. https://doi.org/10.1016/j.envpol.2013.10.013

Tagg, A. S., & Ivar do Sul, J. A. (2019). Is this your glitter? An overlooked but potentially environmentally-valuable microplastic. Marine Pollution Bulletin, 146, 50-53. https://doi.org/10.1016/j.marpolbul.2019.05.068

Veiga, L. F., & Vital, N. (2002). Testes de toxicidade aguda com o microcrustáceo Artemia sp (pp. 111-122). In: Nascimento, I. A., Nipper, M. & Sousa, E. C. P. M. (Eds.). Métodos em ecotoxicologia marinha.: Aplicações no Brasil. Artes Gráficas e Indústria, São Paulo.

Wang, Y., Zhang, D., Zhang, M., Mu, J., Ding, G., Mao, Z., Cao, Y., Jin, F., Cong, Y., Wang, L., Zhang, W., & Wang, J. (2019). Effects of ingested polystyrene microplastics on brine shrimp, Artemia parthenogenetica. Environmental Pollution, 244, 715-722. https://doi.org/10.1016/j.envpol.2018.10.024

Xu, S., Ma, J., Ji, R., Pan, K., & Miao, A. I. (2019). Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. Science of the Total Environment, 703, 134699. https://doi.org/10.1016/j.scitotenv.2019.134699

Yurtsever, M. (2019a). Glitters as a source of primary microplastics: An approach to environmental responsibility and ethics. Journal of Agriculture and Environmental Ethics, 32(3), 459-478. https://doi.org/10.1007/s10806-019-09785-0

Yurtsever, M. (2019b). Tiny, shiny, and colorful microplastics: Are regular glitters a significant source of microplastics? Marine Pollution Bulletin, 146, 678-682. https://doi.org/10.1016/j.marpolbul.2019.07.009

Zar, J. H. (1996). Biostatistical analysis (pp. 1-662). 3rd ed. New Jersey, Prentice-Hall.

Ziajahromi, S., Kumar, A., Neale, P. A., & Leusch, F. D. (2017). Impact of microplastic beads and fibers on waterflea (Ceriodaphnia dubia) survival, growth, and reproduction: Implications of single and mixture exposures. Environmental Science and Technology, 51(22), 13397-13406. https://doi.org/10.1021/acs.est.7b03574

Published

2024-05-02

How to Cite

Abessa, D. M. de S., Gonçalves, A. R. N., Ueda de Carvalho, M. ., Spanghero , N. ., Sales Soares do Nascimento, N., Fornari, M., Perina, F. C., & Cruz, A. C. F. (2024). Not all that glitters is gold: Glitter causes acute toxicity to nauplii of Artemia sp. Maritime Technology and Research, 6(4), Accepted Manuscript. https://doi.org/10.33175/mtr.2024.270722