Predictive models of non-optically active coastal water quality parameters by remote sensing imagery
DOI:
https://doi.org/10.33175/mtr.2025.274944Keywords:
Non-optically active; Coastal water quality; Empirical predictive models; Multiple regression analysis; Sentinel-2 MSI; Dissolved oxygenAbstract
The coastal waters of the Gaza Strip are significantly impacted by wastewater discharge and pollution from commercial and domestic activities. Timely monitoring and accurate assessment of water quality are crucial for detecting contamination. This study established correlations between spectral reflectance and non-optically active pollutants, specifically Dissolved Oxygen (DO), Total Phosphorus (TP), and Molybdenum (Mo). These parameters were selected for their relevance to wastewater pollution and compatibility with the employed measurement techniques. Non-optically active constituents, which do not exhibit distinct spectral signatures, may still be detectable under specific conditions. The study focused on testing the feasibility of retrieving concentrations of non-optically active components in seawater using Sentinel-2 MSI imagery. Sentinel-2 MSI was chosen for its high revisit frequency and broad wavelength range, making it suitable for assessing water quality. Empirical multiple regression models revealed varying performance among the pollutants. The TP model showed poor correlation and high uncertainty. In contrast, the predictive models for DO and Mo yielded more promising results. The DO model exhibited strong performance, achieving a significant coefficient of determination (R²) value of 0.73, with a low prediction error: a Root Mean Square Error (RMSE) of 0.21 % and a Mean Absolute Percentage Error (MAPE) of 6.6 %. The Mo model demonstrated moderate accuracy, with an R² value of 0.51, an RMSE of 0.35 %, and a higher MAPE of 171 %. The results indicated that DO and Mo concentrations correlated with specific Sentinel-2 bands. This study confirms that remote sensing can effectively retrieve concentrations of non-optically active pollutants, supporting rapid seawater quality assessments, particularly in regions where field surveys are challenging.
------------------------------------------------------------------------------
Cite this article:
Abualhin, K., Abushaban, S. (2025). Predictive models of non-optically active coastal water quality parameters by remote sensing imagery. Maritime Technology and Research, 7(3), 274944. https://doi.org/10.33175/mtr.2025.274944
------------------------------------------------------------------------------
Highlights
- Empirical models predict dissolved oxygen and molybdenum concentrations
- Study area affected by wastewater discharge and coastal pollution
- Sentinel-2 satellite data used for non-optically active elements prediction
- DO model shows high accuracy for hypoxic conditions detection
- Molybdenum model shows moderate accuracy, indicating prediction challenges
References
Abualhin, K., & Niemeyer, I. (2018). Deriving bathymetric maps of the shallow coastal water of the Gaza Strip Coastal Zone using passive remotely sensed imagery. Journal of the Indian Society of Remote Sensing 46(9), 1341-1351. https://doi.org/10.1007/s12524-018-0778-y
Abualtayef, M., Rabou, M. A., Afifi, S., Rabou, A. F. A., Seif, A. K., & Masria, A. (2021). Change detection of Gaza Coastal Zone using GIS and remote sensing techniques. Journal of Coastal Conservation, 25(3), 36. https://doi.org/10.1007/s11852-021-00825-4
Brezonik, P. L., Olmanson, L. G., Finlay, J. C., & Bauer, M. E. (2015). Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Remote Sensing of Environment, 157, 199-215. https://doi.org/10.1016/J.RSE.2014.04.033
Chapman, D. V., WHO, UNESCO, & UNEP. (1996). Water quality assessments: A guide to use of biota, sediments and water in environmental monitoring. In Chapman, D. V. (2nd eds.). Vol. 2. London: E & FN Spon.
Dierssen, H. M. (2010). Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate. Proceedings of the National Academy of Sciences of the United States of America, 107(40), 17073-17078. https://doi.org/10.1073/pnas.0913800107
Doxaran, D., Froidefond, J. M., & Castaing, P. (2002). A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters. International Journal of Remote Sensing, 23(23), 5079-5085. https://doi.org/10.1080/0143116021000009912
Eaton, A. D., Clesceri, L. S., Greenberg, A. E., Franson, M. A. H., American Public Health Association, American Water Works Association, & Water Environment Federation. (2012). Standard methods for the examination of water and wastewater. American Public Health Association.
ESA. (2021). Level-1C product formatting - Sentinel-2 MSI technical guide - Sentinel online - Sentinel online. Retrieved from https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/level-1c-processing
Ferdous, J., & Rahman, M. T. U. (2020). Developing an empirical model from landsat data series for monitoring water salinity in coastal Bangladesh. Journal of Environmental Management, 255(10), 109861. https://doi.org/10.1016/j.jenvman.2019.109861
Fu, B., Lao, Z., Liang, Y., Sun, J., He, X., Deng, T., He, W., Fan, D., Gao, E., & Hou, Q. (2022). Evaluating optically and non-optically active water quality and its response relationship to hydro-meteorology using multi-source data in Poyang Lake, China. Ecological Indicators, 145, 109675. https://doi.org/10.1016/j.ecolind.2022.109675
Gholizadeh, M. H., & Melesse, A. M. (2017). Study on spatiotemporal variability of water quality parameters in Florida Bay using remote sensing. Journal of Remote Sensing & GIS, 6(3), 1-11. https://doi.org/10.4172/2469-4134.1000207
Gons, H. J. (1999). Optical teledetection of chlorophyll a in Turbid Inland Waters. Environmental Science and Technology, 33(7), 1127-1132. https://doi.org/10.1021/es9809657
González-Márquez, L. C., Torres-Bejarano, F. M., Torregroza-Espinosa, A. C., Hansen-Rodríguez, I. R., & Rodríguez-Gallegos, H. B. (2018). Use of LANDSAT 8 images for depth and water quality assessment of El Guájaro Reservoir, Colombia. Journal of South American Earth Sciences, 82, 231-238. https://doi.org/10.1016/j.jsames.2018.01.004
Guo, H., Huang, J. J., Chen, B., Guo, X., & Singh, V. P. (2021). A machine learning-based strategy for estimating non-optically active water quality parameters using Sentinel-2 imagery. International Journal of Remote Sensing, 42(5), 1841-1866. https://doi.org/10.1080/01431161.2020.1846222
Gupta, R. P. (2017). Remote sensing geology (3rd eds.). Vol. 33. Springer Verlag. https://doi.org/10.1007/978-3-662-55876-8
Hassan, G., Goher, M. E., Shaheen, M. E., & Taie, S. A. (2021). Hybrid predictive model for water quality monitoring based on Sentinel-2A L1C data. IEEE Access, 9, 65730-65749. https://doi.org/10.1109/ACCESS.2021.3075849
Karaoui, I., Abdelghani, B., Arioua, A., Hssaisoune, M., Sabri, M., Ouhamchich, K. A., Elhamdouni, D., Idrissi, A. E. A., & Nouaim, W. (2019). Evaluating the potential of Sentinel-2 satellite images for water quality characterization of artificial reservoirs: The Bin El ouidane reservoir case study (Morocco). Meteorology Hydrology and Water Management, 7(1), 31-39. https://doi.org/10.26491/mhwm/95087
Kim, C., Eom, J. B., Jung, S., & Ji, T. (2016). Detection of organic compounds in water by an optical absorbance method. Sensors (Switzerland), 16(1), 1-7. https://doi.org/10.3390/s16010061
Lubczonek, J., & Zaniewicz, G. (2023). Application of filtering techniques to smooth a surface of hybrid digital bathymetric model. Remote Sensing, 15(19), 4737. https://doi.org/10.3390/rs15194737
Mathew, M. M., Rao, N. S., & Mandla, V. R. (2017). Development of regression equation to study the total nitrogen, total phosphorus and suspended sediment using remote sensing data in Gujarat and Maharashtra Coast of India. Journal of Coastal Conservation, 21(6), 917-927. https://doi.org/10.1007/s11852-017-0561-1
Matthews, M. W. (2011). A current review of empirical procedures of remote sensing in Inland and Near-Coastal Transitional Waters. International Journal of Remote Sensing, 32(21), 6855-6899. https://doi.org/10.1080/01431161.2010.512947
McKee, D., Cunningham, A., & Dudek, A. (2007). Optical water type discrimination and tuning remote sensing band-ratio algorithms: Application to retrieval of chlorophyll and Kd(490) in the Irish and Celtic Seas. Estuarine, Coastal and Shelf Science, 73(3-4), 827-834. https://doi.org/10.1016/j.ecss.2007.03.028
Meer, F. D. V. D., Werff, H. M. A. V. D., & Ruitenbeek, F. J. A. V. (2014). Potential of ESA’s Sentinel-2 for geological applications. Remote Sensing of Environment, 148, 124-133. https://doi.org/10.1016/j.rse.2014.03.022
Morel, A., & Gentili, B. (2009). Remote sensing of environment a simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data. Remote Sensing of Environment, 113(5), 998-1011. https://doi.org/10.1016/j.rse.2009.01.008
Morrison, S. J., Mushovic, P. S., & Niesen, P. L. (2006). Early breakthrough of molybdenum and uranium in a permeable reactive barrier. Environmental Science and Technology, 40(6), 2018-2024. https://doi.org/10.1021/ES052128S
Mushtaq, F., & Lala, M. G. N. (2017). Remote estimation of water quality parameters of Himalayan Lake (Kashmir) using landsat 8 OLI imagery. Geocarto International, 32(3), 274-285. https://doi.org/10.1080/10106049.2016.1140818
Nahhal, D. E., El-Nahhal, I., Najar, H. A., Al-Agha, M., & El-Nahhal, Y. (2021). Acidity, electric conductivity, dissolved oxygen total dissolved solid and salinity profiles of marine water in Gaza: Influence of wastewater discharge. American Journal of Analytical Chemistry, 12(11), 408-428. https://doi.org/10.4236/ajac.2021.1211025
OCHA. (2018). Seawater pollution raises concerns of waterborne diseases and environmental hazards in the Gaza Strip: United Nations Office for the Coordination of Humanitarian Affairs - Occupied Palestinian Territory. The United Nations Office for the Coordination of Humanitarian Affairs. Retrieved from https://www.ochaopt.org/content/seawater-pollution-raises-concerns-waterborne-diseases-and-environmental-hazards-gaza-strip
Pizani, F. M. C., Maillard, P., Ferreira, A. F. F., & Amorim, C. C. D. (2020). Estimation of water quality in a reservoir from Sentinel-2 Msi and Landsat-8 Oli Sensors. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 5(3), 401-408. https://doi.org/10.5194/isprs-Annals-V-3-2020-401-2020
PWA. (2012). Annual status report on water resources, water supply, and wastewater in the occupied State of Palestine 2011 (pp. 1-97). Palestinian Water Authority, State of Palestine.
Salomon, M., & Markus, T. (2018). Handbook on marine environment protection. In Salomon, M., & Markus, T. (Ed.). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-60156-4
Segl, K., Guanter, L., Gascon, F., Kuester, T., Rogass, C., & Mielke, C. (2015). S2eteS: An end-to-end modeling tool for the simulation of Sentinel-2 image products. IEEE Transactions on Geoscience and Remote Sensing, 53(10), 55608-5571. https://doi.org/10.1109/TGRS.2015.2424992
Shomar, B. H., Müller, G., & Yahya, A. (2005). Seasonal variations of chemical composition of water and bottom sediments in the Wetland of Wadi Gaza , Gaza Strip. Wetlands Ecology and Management, 13(4), 419-431. https://doi.org/10.1007/s11273-004-0412-3
Smedley, P. L., & Kinniburgh, D. G. (2017). Molybdenum in natural waters: A review of occurrence, distributions and controls. Applied Geochemistry, 84, 387-432. https://doi.org/10.1016/j.apgeochem.2017.05.008
Sun, D., Qiu, Z., Li, Y., Shi, K., & Gong, S. (2014). Detection of total phosphorus concentrations of Turbid Inland Waters using a remote sensing method. Water, Air, and Soil Pollution, 225(5), 1-17. https://doi.org/10.1007/S11270-014-1953-6/METRICS
USEPA. (2012). Recreational water quality criteria. Washington, D.C.
Vestner, R. J., Brooke, K., & Nicolet-Misslbeck, L. (2013). Water reuse in the Gaza Strip, Palestine. Water Science and Technology, 67(4), 729-736. https://doi.org/10.2166/WST.2012.604
Wilcox, R. R. (2010). Fundamentals of modern statistical methods: Substantially improving power and accuracy. Vol. 249. New York: Springer.
Yu, X., Lee, Z., Shen, F., Wang, M., Wei, J., Jiang, L., & Shang, Z. (2019). An empirical algorithm to seamlessly retrieve the concentration of suspended particulate matter from water color across ocean to Turbid River Mouths. Remote Sensing of Environment, 235, 1-38. https://doi.org/10.1016/j.rse.2019.111491
Zeng, S., Li, Y., Lyu, H., Xu, J., Dong, X., Wang, R., Yang, Z., & Li, J. (2020). Mapping spatio-temporal dynamics of main water parameters and understanding their relationships with driving factors using GF-1 Images in a clear reservoir. Environmental Science and Pollution Research, 27(27), 33929-33950. https://doi.org/10.1007/s11356-020-09687-z
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Maritime Technology and Research

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright: CC BY-NC-ND 4.0



