Time series modeling of greenhouse gas emissions: A case study for a chemical tanker ship

Authors

  • Firat Bolat Faculty of Maritime, Istanbul Technical University, Istanbul 34940, Türkiye

DOI:

https://doi.org/10.33175/mtr.2026.278949

Keywords:

Maritime; Shipping; Greenhouse gases; Modeling

Abstract

Maritime transportation is, relatively, responsible for a small fraction of the total emissions; however, it is significant in the context of global carbon dioxide (CO2) emissions. The International Maritime Organization (IMO) has charted out an extensive program in its strategy on the reduction of greenhouse gas (GHG) emissions from ships. This research employs Box-Jenkins time series modeling for analysis and forecasting of CO2 and total sulfur dioxide (SO2) emissions by GHG index, as well as ton-mile-based emissions, utilizing actual data from the engine of a chemical tanker ship. Time series analysis can develop effective regulatory and operational strategies, as underlined by this research that investigates how operations, regulations, and technology influence profiles of emissions. By carrying out the Box-Jenkins methodology, incorporating autocorrelation moving average integrated autoregressive integrated variables, this study presents a modeling study that corrects importance in future policies emission reductions. Results obtained from strict model choice, validation, and assessment give useful input into emission patterns, and can be used as a foundation for more study and policy making aimed at improving the environmental sustainability of shipping operations. Decision-makers in the shipping sector can leverage the findings of this study to implement similar evidence-based approaches.

------------------------------------------------------------------------------
Cite this article:

Bolat, F. (2026). Time series modeling of greenhouse gas emissions: A case study for a chemical tanker ship. Maritime Technology and Research, 8(1), 278949. https://doi.org/10.33175/mtr.2026.278949

------------------------------------------------------------------------------

Highlights

  • Although maritime transport accounts for a relatively small share of total emissions, it constitutes a significant contributor to global carbon dioxide (CO₂) outputs.
  • This study utilises Box-Jenkins time series modelling to analyse and forecast CO₂ and sulphur dioxide (SO₂) emissions, based on real-world engine data from a chemical tanker vessel.
  • Time series analysis is employed to assess how operational practices, regulatory frameworks, and technological interventions shape emission profiles.
  • Through rigorous model selection, validation, and evaluation, the research offers robust insights that may underpin future policy development in maritime emissions reduction.
  • The findings provide a valuable evidence base that can inform sustainable decision-making practices within the shipping industry.

References

Aib, E. (2023). Universal “plug and play” real-time entire automotive exhaust effluents, industry vents and flue gas emissions liquefiers: The game changer approach-phase two category. Petroleum & Petrochemical Engineering Journal, 7(2), 000349. https://doi.org/10.23880/ppej-16000349

Akaike, H. (2003). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705

Barreiro, J., Zaragoza, S., & Diaz-Casas, V. (2022). Review of ship energy efficiency. Ocean Engineering, 257, 111594. https://doi.org/10.1016/j.oceaneng.2022.111594

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control. John Wiley & Sons. Retrieved from https://www.wiley.com/en-us/Time+Series+Analysis%3A+Forecasting+and+Control%2C+5th+Edition-p-9781118675021

Chai, T., Xue, H., Sun, K., & Weng, J. (2020). Ship accident prediction based on improved quantum‐behaved PSO‐LSSVM. Mathematical Problems in Engineering, 2020(1), 8823322. https://doi.org/10.1155/2020/8823322

Ditria, J. C. (2002). Design basis of a compact production system for minimum size and maximum flexibility (pp. 1-28). In Proceedings of the Production Separation Systems IBC Conference, Houston, Texas.

Esteve-Pérez, J., Río-González, M. D., & Gutiérrez-Romero, J. E. (2023). Forecast analysis of pollutant emissions of cruise ship routes in Western Mediterranean. Applied Sciences, 13(14), 8149. https://doi.org/10.3390/app13148149

Gad, A. G. (2022). Particle swarm optimization algorithm and its applications: A systematic review. Archives of Computational Methods in Engineering, 29(5), 2531-2561. https://doi.org/10.1007/s11831-021-09694-4

Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38-50. https://doi.org/10.1016/j.esr.2019.01.006

Halim, R. A., Kirstein, L., Merk, O., & Martinez, L. M. (2018). Decarbonization pathways for international maritime transport: A model-based policy impact assessment. Sustainability, 10(7), 2243. https://doi.org/10.3390/su10072243

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts. Retrieved from https://otexts.com/fpp2

Jalkanen, J. P., Fridell, E., Kukkonen, J., Moldanova, J., Ntziachristos, L., Grigoriadis, A., Moustaka, M., Fragkou, E., Tsegas, G., Maragkidou, A., Sofiev, M., Hänninen, R., Grönholm, T., Palamarchuk, J., Majamäki, E., Winiwarter, W., Gueret, S., Sokhi, R. S., Kumar, S., …, & Alyuz, O. U. (2024). Environmental impacts of exhaust gas cleaning systems in the Baltic Sea, North Sea, and the Mediterranean sea area. Finnish Meteorological Institute. https://doi.org/10.35614/isbn.9789523361898

Jalkanen, J. P., Johansson, L., & Kukkonen, J. (2016). A comprehensive inventory of ship traffic exhaust emissions in the European sea areas in 2011. Atmospheric Chemistry and Physics, 16(1), 71-84. https://doi.org/10.5194/acp-16-71-2016

Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., Bergamaschi, P., Pagliari, V., Olivier, J. G. J., Peters, J. A. H. W., van Aardenne, J. A., Monni, S., Doering, U., Petrescu, A. M. R., Solazzo, E., & Oreggioni, G. D. (2019). EDGAR v4. 3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970-2012. Earth System Science Data, 11(3), 959-1002. https://doi.org/10.5194/essd-11-959-2019

Kim, J. S., & Choi, J. H. (2023). A study on analysis of green house gaseous emitted from ships through operation information. Journal of International Maritime Safety, Environmental Affairs, and Shipping, 7(2-3), 2234163. https://doi.org/10.1080/25725084.2023.2234163

Koushan, K., Krasilnikov, V., Nataletti, M., Sileo, L., & Spence, S. (2020). Experimental and numerical study of pre-swirl stators PSS. Journal of Marine Science and Engineering, 8(1), 47. http://dx.doi.org/10.3390/jmse8010047

Lirn, T. C., Jim, Wu, Y. C., & Chen, Y. J. (2013). Green performance criteria for sustainable ports in Asia. International Journal of Physical Distribution & Logistics Management, 43(5/6), 427-451. https://doi.org/10.1108/ijpdlm-04-2012-0134

Merk, O. (2014). Shipping emissions in ports. Discussion papers. https://doi.org/10.1787/5jrw1ktc83r1-en

Millefiori, L. M., Braca, P., Zissis, D., Spiliopoulos, G., Marano, S., Willett, P. K., & Carniel, S. (2021). COVID-19 impact on global maritime mobility. Scientific Reports, 11(1), 18039. https://doi.org/10.1038/s41598-021-97461-7

Premsamarn, P., Win, T. K., & Watanabe, D. (2025). Assessing the impact of emission control areas policy on ship emissions in the Gulf of Thailand using AIS Data. Maritime Technology and Research, 7(3), 275311. https://doi.org/10.33175/mtr.2025.275311

Osman, A. I., Mehta, N., Elgarahy, A. M., Hefny, M., Al-Hinai, A., Al-Muhtaseb, A. A. H., & Rooney, D. W. (2022). Hydrogen production, storage, utilisation and environmental impacts: A review. Environmental Chemistry Letters, 20, 153-188. https://doi.org/10.1007/s10311-021-01322-8

Sari, A., Sulukan, E., & Özkan, D. (2021). Analysis and modeling the energy system of a chemical tanker by LEAP. Journal of Ship Production and Design, 37(1), 45-53. https://doi.org/10.5957/JSPD.07190034

Schalm, O., & Jacobs, W. (2024). Integrating continuous pollutant measurements with time-lapse photography to evaluate inland vessel surroundings' influence on wheelhouse indoor air quality. In Proceedings of the Maritime Transport Conference. Universitat Politècnica de Catalunya. https://doi.org/10.5821/mt.13188

Staffell, I., Scamman, D., Abad, A. V., Balcombe, P., Dodds, P. E., Ekins, P., Shah, N., & Ward, K. R. (2019). The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, 12(2), 463-491. https://doi.org/10.1039/c8ee01157e

Ustolin, F., Campari, A., & Taccani, R. (2022). An extensive review of liquid hydrogen in transportation with focus on the maritime sector. Journal of Marine Science and Engineering, 10(9), 1222. https://doi.org/10.3390/jmse10091222

Wang, H., Lang, X., & Mao, W. (2021). Voyage optimization combining genetic algorithm and dynamic programming for fuel/emissions reduction. Transportation Research Part D: Transport and Environment, 90, 102670. https://doi.org/10.1016/j.trd.2020.102670

Yakubovskiy, S., & Zaidman, G. (2024). Dynamics and structure of world seaborne trade in 2009-2023: Impact of COVID-19 pandemic and Ukrainian War. Аctual Problems of International Relations, 1(158), 70-84. https://doi.org/10.17721/apmv.2024.158.1.70-84

Yue, M., Lambert, H., Pahon, E., Roche, R., Jemei, S., & Hissel, D. (2021). Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews, 146, 111180. https://doi.org/10.1016/j.rser.2021.111180

Downloads

Published

2025-10-19