Harnessing mangrove phytoremediation for coastal heavy metal pollution: A chemical environmental perspective

Authors

  • Said Ali Akbar Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Zulkarnain Jalil Department of Physics, Natural Science and Mathematics Faculty, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Chitra Octavina Department of Marine Sciences, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Ichsan Setiawan Department of Marine Sciences, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Maria Ulfah Department of Marine Sciences, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Teuku Haris Iqbal Department of Fisheries Resources Utilization, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Edy Miswar Center for Environmental and Natural Resources Research (PPLH-SDA), Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

DOI:

https://doi.org/10.33175/mtr.2026.281734

Keywords:

Mangrove phytoremediation, Heavy metals, Sediment pollution, Metal uptake, Coastal ecosystem, Mangrove phytoremediation; Heavy metals; Sediment pollution; Metal uptake; Coastal ecosystem

Abstract

Mangrove ecosystems play a vital role in mitigating heavy metal (HM) contamination in coastal regions due to their unique biological and ecological characteristics. This review synthesizes current knowledge on the phytoremediation capacity of mangrove species, with a focus on their mechanisms of HM uptake, accumulation, and translocation. Various species, such as Avicennia marina, Kandelia candel, and Rhizophora stylosa, demonstrate notable bioconcentration factors (e.g., BCFroot up to 12.3 for Cd) and selective metal compartmentalization, particularly in roots, thereby minimizing translocation to aerial parts (e.g., TF as low as 0.05 for Pb). The analysis of metal concentrations across different mangrove sites worldwide reveals that sediment composition, sampling depth, and anthropogenic activities significantly influence HM distribution. Mechanistic processes including redox potential modulation, rhizosphere oxidation, and associations with microbial communities further enhance the immobilization and detoxification of metals such as Cd, Pb, Cr, Cu, and Hg. As a narrative review, this article consolidates global findings and highlights species-specific strategies (e.g., tolerance differences among Avicennia and Rhizophora) and ecological thresholds (e.g., salinity tolerance ranges of 10 - 35 PSU, optimal redox potential above –100 mV, and metal concentration limits beyond which growth declines). Future prospects include integrating molecular tools, designing engineered mangrove wetlands, and developing policy-driven restoration initiatives. Ultimately, mangrove-based phytoremediation contributes not only to coastal pollution control, but also to the achievement of Sustainable Development Goals (SDGs), particularly SDG 14 (Life Below Water) and SDG 13 (Climate Action), while supporting real-world applications, such as coastal restoration planning and nature-based solutions.

------------------------------------------------------------------------------
Cite this article:

Akbar, S. A., Jalil, Z., Octavina, C., Setiawan, I., Ulfah, M., Iqbal, T. H., & Miswar, E. (2026). Harnessing mangrove phytoremediation for coastal heavy metal pollution: A chemical environmental perspective. Maritime Technology and Research, 8(1), 281734. https://doi.org/10.33175/mtr.2026.281734

------------------------------------------------------------------------------

Highlights

  • Mangroves act as natural biofilters mitigating coastal heavy metal pollution.
  • Species-specific uptake shows Kandelia candel excels in Cd root sequestration.
  • Redox and salinity modulate HM mobility, shaping phytoremediation efficiency.
  • Antioxidant defenses and vacuolar storage sustain tolerance under HM stress.
  • Mangrove-based strategies align with SDGs via restoration and pollution control.

References

Akbar, S. A., Hasan, M., Nazar, M., Zulfahmi, I., Miswar, E., Iqhrammullah, M., & Jalil, Z. (2025). Fluorescent carbon quantum dots from Syzygium aromaticum as a selective sensor for Fe3+ and Cd2+ detection in aqueous solution. Case Studies in Chemical and Environmental Engineering, 11, 101166. https://doi.org/10.1016/j.cscee.2025.101166

Akbar, S. A., & Khairunnisa, K. (2024). Seaweed-based biosorbent for the removal of organic and inorganic contaminants from water: A systematic review. BIO Web of Conferences, 87, 2011. https://doi.org/10.1051/bioconf/20248702011

Alharbi, O. M. L., Khattab, R. A., Ali, I., Binnaser, Y. S., & Aqeel, A. (2019). Assessment of heavy metals contamination in the sediments and mangroves (Avicennia marina) at Yanbu coast, Red Sea, Saudi Arabia. Marine Pollution Bulletin, 149, 110669. https://doi.org/10.1016/j.marpolbul.2019.110669

Almahasheer, H., Serrano, O., Duarte, C. M., & Irigoien, X. (2018). Remobilization of heavy metals by mangrove leaves. Frontiers in Marine Science, 5, 484. https://doi.org/10.3389/fmars.2018.00484

Alnasser, A. S., Halawani, R. F., & Quicksall, A. N. (2024). Assessment of heavy metal distribution, risk, and sourcing in mangrove sediments from three Saudi Arabian Red Sea locations. Marine Pollution Bulletin, 198, 115821. https://doi.org/10.1016/j.marpolbul.2023.115821

Al-Solaimani, S. G., Abohassan, R. A., Alamri, D. A., Yang, X., Rinklebe, J., & Shaheen, S. M. (2022). Assessing the risk of toxic metals contamination and phytoremediation potential of mangrove in three coastal sites along the Red Sea. Marine Pollution Bulletin, 176, 113412. https://doi.org/10.1016/j.marpolbul.2022.113412

Bodin, N., N’Gom-Kâ, R., Kâ, S., Thiaw, O. T., Tito de Morais, L., Le Loch, F., Rozuel-Chartier, E., Auger, D., & Chiffoleau, J. F. (2013). Assessment of trace metal contamination in mangrove ecosystems from Senegal, West Africa. Chemosphere, 90(2), 150-157. https://doi.org/10.1016/j.chemosphere.2012.06.019

Chen, S. (2022). Mechanism of Zn alleviates Cd toxicity in mangrove plants (Kandelia obovata). Frontiers in Plant Science, 13, 1035836. http://dx.doi.org/10.3389/fpls.2022.1035836

Chen, S., Lin, R., Lu, H., Wang, Q., Yang, J., Liu, J., & Yan, C. (2020). Effects of phenolic acids on free radical scavenging and heavy metal bioavailability in kandelia obovata under cadmium and zinc stress. Chemosphere, 249, 126341. https://doi.org/10.1016/j.chemosphere.2020.126341

Cheng, H., Liu, Y., Tam, N. F. Y., Wang, X., Li, S. Y., Chen, G. Z., & Ye, Z. H. (2010). The role of radial oxygen loss and root anatomy on zinc uptake and tolerance in mangrove seedlings. Environmental Pollution, 158(5), 1189-1196. https://doi.org/10.1016/j.envpol.2010.01.025

Cheng, W. H., & Yap, C. K. (2015). Potential human health risks from toxic metals via mangrove snail consumption and their ecological risk assessments in the habitat sediment from Peninsular Malaysia. Chemosphere, 135, 156-165. https://doi.org/10.1016/j.chemosphere.2015.04.013

Chiu, C. Y., Hsiu, F. S., Chen, S. S., & Chou, C. H. (1995). Reduced toxicity of Cu and Zn to mangrove seedlings (Kandelia candel (L.) Druce.) in saline environments. Botanical Bulletin of Academia Sinica, 36, 19-24.

Chowdhury, R., Favas, P. J. C., Pratas, J., Jonathan, M. P., Ganesh, P. S., & Sarkar, S. K. (2015). Accumulation of Trace Metals by Mangrove Plants in Indian Sundarban Wetland: Prospects for Phytoremediation. International Journal of Phytoremediation, 17(9), 885-894. https://doi.org/10.1080/15226514.2014.981244

Dai, M., Liu, W., Hong, H., Lu, H., Liu, J., Jia, H., & Yan, C. (2018). Exogenous phosphorus enhances cadmium tolerance by affecting cell wall polysaccharides in two mangrove seedlings Avicennia marina (Forsk.) Vierh and Kandelia obovata (S., L.) Yong differing in cadmium accumulation. Marine Pollution Bulletin, 126, 86-92. https://doi.org/10.1016/j.marpolbul.2017.10.083

Das, S. K., Patra, J. K., & Thatoi, H. (2016). Antioxidative response to abiotic and biotic stresses in mangrove plants: A review. International Review of Hydrobiology, 101(1-2), 3-19. https://doi.org/10.1002/iroh.201401744

Dey, G., Banerjee, P., Maity, J. P., Sharma, R. K., Gnanachandrasamy, G., Huang, Y. H., Huang, H. B., & Chen, C. Y. (2022). Heavy metals distribution and ecological risk assessment including arsenic resistant PGPR in tidal mangrove ecosystem. Marine Pollution Bulletin, 181, 113905. https://doi.org/10.1016/j.marpolbul.2022.113905

Dhananjayan, V., Ravichandran, B., Jawahar, S., Mala, A., Shridhar, K., Panjakumar, K., Gopalakrishnan, A., & Thamaraikannan, M. (2025). Risk assessment and contaminant characterization of PCBs, PAHs, and heavy metals in Pichavaram mangrove sediments, Tamil Nadu, India. Marine Pollution Bulletin, 217, 118094. https://doi.org/10.1016/j.marpolbul.2025.118094

Ding, Z., Wu, H., Feng, X., Liu, J., Liu, Y., Yuan, Y., Zhang, L., Lin, G., & Jiayong, P. (2011). Distribution of Hg in mangrove trees and its implication for Hg enrichment in the mangrove ecosystem. Applied Geochemistry, 26(2), 205-212. https://doi.org/10.1016/j.apgeochem.2010.11.020

Du, J., Yan, C., & Li, Z. (2013). Formation of iron plaque on mangrove Kandalar. Obovata (S. L.) root surfaces and its role in cadmium uptake and translocation. Marine Pollution Bulletin, 74(1), 105-109. https://doi.org/10.1016/j.marpolbul.2013.07.023

El-Said, G. F., & Youssef, D. H. (2013). Ecotoxicological impact assessment of some heavy metals and their distribution in some fractions of mangrove sediments from Red Sea, Egypt. Environmental Monitoring and Assessment, 185(1), 393-404. https://doi.org/10.1007/s10661-012-2561-9

Fernández-Cadena, J. C., Andrade, S., Silva-Coello, C. L., & De la Iglesia, R. (2014). Heavy metal concentration in mangrove surface sediments from the north-west coast of South America. Marine Pollution Bulletin, 82(1), 221-226. https://doi.org/10.1016/j.marpolbul.2014.03.016

Guangqiu, Q., Chongling, Y., & Haoliang, L. (2007). Influence of heavy metals on the carbohydrate and phenolics in mangrove, Aegiceras corniculatum L., seedlings. Bulletin of Environmental Contamination and Toxicology, 78(6), 440-444. https://doi.org/10.1007/s00128-007-9204-9

He, B., Li, R., Chai, M., & Qiu, G. (2014). Threat of heavy metal contamination in eight mangrove plants from the Futian mangrove forest, China. Environmental Geochemistry and Health, 36(3), 467-476. https://doi.org/10.1007/s10653-013-9574-3

Heriyanto, N. M., & Suharti, S. (2019). Kualitas Perairan, Kesuburan Tanah dan Kandungan Logam Berat di Hutan Mangrove Nusa Penida, Bali. Jurnal Penelitian Sosial Dan Ekonomi Kehutanan, 16(1), 25-33. https://doi.org/10.20886/jphka.2019.16.1.25-33

Huang, G. Y., & Wang, Y. S. (2010). Physiological and biochemical responses in the leaves of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza) exposed to multiple heavy metals. Journal of Hazardous Materials, 182(1), 848-854. https://doi.org/10.1016/j.jhazmat.2010.06.121

Huang, J. W., Sun, Y. Y., Li, Q. S., Zhou, H. Z., Li, Y. H., Fan, X. X., & Wang, J. F. (2024). Increased risk of heavy metal accumulation in mangrove seedlings in coastal wetland environments due to microplastic inflow. Environmental Pollution, 349, 123927. https://doi.org/10.1016/j.envpol.2024.123927

Jaya, M. S., Maharani, M. D. D., & Febrina, L. (2022). Bioakumulasi Logam Berat Pada Avicennia Marina Di Taman Wisata Alam Mangrove Angke Kapuk Jakarta. Jurnal Sustainable Environment Optimizing Industri, 3(2), 1-15. https://doi.org/10.36441/seoi.v3i2.440

Lang, T., Tam, N. F., Hussain, M., Ke, X., Wei, J., Fu, Y., Li, M., Huang, X., Huang, S., Xiong, Z., Wu, K., Li, F., Chen, Z., Hu, Z., Gao, C., Yang, Q., & Zhou, H. (2023). Dynamics of heavy metals during the development and decomposition of leaves of Avicennia marina and Kandelia obovata in a subtropical mangrove swamp. Science of The Total Environment, 855, 158700. https://doi.org/10.1016/j.scitotenv.2022.158700

Li, R., Li, R., Chai, M., Shen, X., Xu, H., & Qiu, G. (2015). Heavy metal contamination and ecological risk in Futian mangrove forest sediment in Shenzhen Bay, South China. Marine Pollution Bulletin, 101(1), 448-456. https://doi.org/10.1016/j.marpolbul.2015.09.048

Liu, J., Gong, J., Qin, L., Wang, H., & Wang, Y. (2014). Study of inspection on metal sheet with subsurface defects using linear frequency modulated ultrasound excitation thermal-wave imaging (LFM-UTWI). Infrared Physics & Technology, 62, 136-142. https://doi.org/10.1016/j.infrared.2013.11.006

Ma, X., Song, Z., Wang, Y.-P., Wang, S., Zhan, Z.-W., & He, D. (2025). Heavy metal dynamics in riverine mangrove systems: A case study on content, migration, and enrichment in surface sediments, pore water, and plants in Zhanjiang, China. Marine Environmental Research, 203, 106832. https://doi.org/10.1016/j.marenvres.2024.106832

MacFarlane, G. R., & Burchett, M. D. (2002). Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh. Marine Environmental Research, 54(1), 65-84. https://doi.org/10.1016/S0141-1136(02)00095-8

Maldonado-Román, M., Jiménez-Collazo, J., Malavé-Llamas, K., & Musa-Wasil, J. C. (2016). Mangroves and Their Response to a Heavy Metal Polluted Wetland in The North Coast of Puerto Rico. Journal of Tropical Life Science, 6(3), 210-218. https://doi.org/10.11594/jtls.06.03.13

Marchand, C., Allenbach, M., & Lallier-Vergès, E. (2011a). Relationships between heavy metals distribution and organic matter cycling in mangrove sediments (Conception Bay, New Caledonia). Geoderma, 160(3), 444-456. https://doi.org/10.1016/j.geoderma.2010.10.015

Marchand, C., Lallier-Vergès, E., & Allenbach, M. (2011b). Redox conditions and heavy metals distribution in mangrove forests receiving effluents from shrimp farms (Teremba Bay, New Caledonia). Journal of Soils and Sediments, 11(3), 529-541. https://doi.org/10.1007/s11368-010-0330-3

Meera, S. P., Bhattacharyya, M., & Kumar, A. (2023). Dynamics of mangrove functional traits under osmotic and oxidative stresses. Plant Growth Regulation, 101(2), 285-306. https://doi.org/10.1007/s10725-023-01034-9

Naidoo, G., Hiralal, T., & Naidoo, Y. (2014). Ecophysiological responses of the mangrove Avicennia marina to trace metal contamination. Flora - Morphology, Distribution, Functional Ecology of Plants, 209(1), 63-72. https://doi.org/10.1016/j.flora.2013.10.003

Nath, B., Birch, G., & Chaudhuri, P. (2013). Trace metal biogeochemistry in mangrove ecosystems: A comparative assessment of acidified (by acid sulfate soils) and non-acidified sites. Science of The Total Environment, 463-464, 667-674. https://doi.org/10.1016/j.scitotenv.2013.06.024

Nath, B., Chaudhuri, P., & Birch, G. (2014). Assessment of biotic response to heavy metal contamination in Avicennia marina mangrove ecosystems in Sydney Estuary, Australia. Ecotoxicology and Environmental Safety, 107, 284-290. https://doi.org/10.1016/j.ecoenv.2014.06.019

Nguyen, A., Richter, O., Le, B. V. Q., Phuong, N. T. K., & Dinh, K. C. (2020). Long-term heavy metal retention by mangroves and effect on its growth: A field inventory and scenario simulation. International Journal of Environmental Research and Public Health, 17(23), 9131. https://doi.org/10.3390/ijerph17239131

Nguyen, K. L., Nguyen, H. A., Richter, O., Pham, M. T., & Nguyen, V. P. (2017). Ecophysiological responses of young mangrove species Rhizophora apiculata (Blume) to different chromium contaminated environments. Science of The Total Environment, 574, 369-380. https://doi.org/10.1016/j.scitotenv.2016.09.063

Ogunsola, S. S., Oladele, O. L., Abdulraheem, T., & Cooke, C. G. (2025). Synergizing phytoremediation and geopolymerization: A sustainable waste-to-wealth approach for heavy metal-contaminated soils. Chemosphere, 144539. https://doi.org/10.1016/j.chemosphere.2025.144539

Parvin, A., Semme, S. A., Sultana, N., Moniruzzaman, M., Saha, B., Mahmud, A., Uddin, M. J., & Hossain, M. K. (2025). Archival indicator of metal pollution in a tropical monsoon coastal region: Impact on environment and human health. Marine Pollution Bulletin, 213, 117600. https://doi.org/10.1016/j.marpolbul.2025.117600

Paul, K. M., Helmond, N. A. G. M., Slomp, C. P., & Jilbert, T. (2024). Trace metals in coastal marine sediments: Natural and anthropogenic sources, correlation matrices, and proxy potentials. Science of The Total Environment, 951, 175789. https://doi.org/10.1016/j.scitotenv.2024.175789

Puthusseri, R. M., Nair, H. P., Johny, T. K., & Bhat, S. G. (2021). Insights into the response of mangrove sediment microbiomes to heavy metal pollution: Ecological risk assessment and metagenomics perspectives. Journal of Environmental Management, 298, 113492. https://doi.org/10.1016/j.jenvman.2021.113492

Rahman, M. M., Chongling, Y., Rahman, Md. M., & Islam, K. S. (2009). Accumulation, distribution and toxicological effects induced by chromium on the development of mangrove plant Kandelia candel (L.) Druce. Ambiente & Água - An Interdisciplinary Journal of Applied Science, 4(1), 6-19. http://dx.doi.org/10.4136/ambi-agua.70

Rahman, M. M., Rahman, M. M., Chongling, Y., & Islam, K. S. (2011). Accumulation, distribution and toxicological effects induced by cadmium on the development of mangrove plant Kandelia candel (L.). Contemporary Problems of Ecology, 4(2), 133-139. https://doi.org/10.1134/S1995425511020032

Rath, S., & Das, S. (2023). Oxidative stress-induced DNA damage and DNA repair mechanisms in mangrove bacteria exposed to climatic and heavy metal stressors. Environmental Pollution, 339, 122722. https://doi.org/10.1016/j.envpol.2023.122722

Richter, O., Nguyen, H. A., Nguyen, K. L., Nguyen, V. P., Biester, H., & Schmidt, P. (2016). Phytoremediation by mangrove trees: Experimental studies and model development. Chemical Engineering Journal, 294, 389-399. https://doi.org/10.1016/j.cej.2016.03.017

Rocha, A. C., Canal, E. C., Campostrini, E., Reis, F. O., & Cuzzuol, G. R. F. (2009). Influence of chromium in Laguncularia racemosa (L). Gaertn f. physiology. Brazilian Journal of Plant Physiology, 21(2), 87-94. https://doi.org/10.1590/S1677-04202009000200001

Sari, I., & and Din, Z. B. (2012). Effects of salinity on the uptake of lead and cadmium by two mangrove species Rhizophora apiculata Bl. and Avicennia alba Bl. Chemistry and Ecology, 28(4), 365-374. https://doi.org/10.1080/02757540.2012.666526

Setiawan, H. (2013). Akumulasi dan Distribusi Logam Berat pada Vegetasi Mangrove di Pesisir Sulawesi Selatan. Jurnal Ilmu Kehutanan, 7(1), 12-24. https://doi.org/10.22146/jik.6134

Shengchang, Y., & Qi, W. (2003). Effect of Cd on growth and physiological characteristics of Aegiceras conrniculatum seedlings. Marine Environmental Science, 22(1), 38-42.

Swain, S., Pattanayak, A. A., Sahu, B. K., Satapathy, D. R., & Panda, C. R. (2021). Time-series monitoring and ecological risk assessment of heavy metal pollution in Mahanadi estuary, east coast of India. Regional Studies in Marine Science, 47, 101923. https://doi.org/10.1016/j.rsma.2021.101923

Usman, A. R. A., Alkredaa, R. S., & Al-Wabel, M. I. (2013). Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator. Ecotoxicology and Environmental Safety, 97, 263-270. https://doi.org/10.1016/j.ecoenv.2013.08.009

Walsh, G. E., Ainsworth, K. A., & Rigby, R. (1979). Resistance of red mangrove (Rhizophora mangle L.) seedlings to lead, cadmium, and mercury. Biotropica, 11(1), 22-27. https://doi.org/10.2307/2388167

Wang, Q., Mei, D., Chen, J., Lin, Y., Liu, J., Lu, H., & Yan, C. (2019). Sequestration of heavy metal by glomalin-related soil protein: Implication for water quality improvement in mangrove wetlands. Water Research, 148, 142-152. https://doi.org/10.1016/j.watres.2018.10.043

Wang, Y., Qiu, Q., Xin, G., Yang, Z., Zheng, J., Ye, Z., & Li, S. (2013). Heavy metal contamination in a vulnerable mangrove swamp in South China. Environmental Monitoring and Assessment, 185(7), 5775-5787. https://doi.org/10.1007/s10661-012-2983-4

Wu, Q., Tam, N. F. Y., Leung, J. Y. S., Zhou, X., Fu, J., Yao, B., Huang, X., & Xia, L. (2014). Ecological risk and pollution history of heavy metals in Nansha mangrove, South China. Ecotoxicology and Environmental Safety, 104, 143-151. https://doi.org/10.1016/j.ecoenv.2014.02.017

Xie, X., Weiss, D. J., Weng, B., Liu, J., Lu, H., & Yan, C. (2013). The short-term effect of cadmium on low molecular weight organic acid and amino acid exudation from mangrove (Kandelia obovata (S., L.) Yong) roots. Environmental Science and Pollution Research, 20(2), 997-1008. https://doi.org/10.1007/s11356-012-1031-9

Xie, Z., Zhu, G., Xu, M., Zhang, H., Yi, W., Jiang, Y., Liang, M., & Wang, Z. (2022). Risk assessment of heavy metals in a typical mangrove ecosystem: A case study of Shankou Mangrove National Natural Reserve, southern China. Marine Pollution Bulletin, 178, 113642. https://doi.org/10.1016/j.marpolbul.2022.113642

Yadav, A., Ram, A., Majithiya, D., Salvi, S., Sonavane, S., Kamble, A., Ghadigaonkar, S., Jaiswar, J. R. M., & Gajbhiye, S. N. (2015). Effect of heavy metals on the carbon and nitrogen ratio in Avicennia marina from polluted and unpolluted regions. Marine Pollution Bulletin, 101(1), 359-365. https://doi.org/10.1016/j.marpolbul.2015.10.020

Yadav, K. K., Gupta, N., Prasad, S., Malav, L. C., Bhutto, J. K., Ahmad, A., Gacem, A., Jeon, B.-H., Fallatah, A. M., Asghar, B. H., Cabral-Pinto, M. M. S., Awwad, N. S., Alharbi, O. K. R., Alam, M., & Chaiprapat, S. (2023). An eco-sustainable approach towards heavy metals remediation by mangroves from the coastal environment: A critical review. Marine Pollution Bulletin, 188, 114569. https://doi.org/10.1016/j.marpolbul.2022.114569

Yan, Z., Li, X., Chen, J., & Tam, N. F. Y. (2015). Combined toxicity of cadmium and copper in Avicennia marina seedlings and the regulation of exogenous jasmonic acid. Ecotoxicology and Environmental Safety, 113, 124-132. https://doi.org/10.1016/j.ecoenv.2014.11.031

Yan, Z., Sun, X., Xu, Y., Zhang, Q., & Li, X. (2017). Accumulation and tolerance of mangroves to heavy metals: A review. Current Pollution Reports, 3(4), 302-317. https://doi.org/10.1007/s40726-017-0066-4

Yan, Z. Z., Ke, L., & Tam, N. F. Y. (2010). Lead stress in seedlings of Avicennia marina, a common mangrove species in South China, with and without cotyledons. Aquatic Botany, 92(2), 112-118. https://doi.org/10.1016/j.aquabot.2009.10.014

Yi-Ming, T., Yan-Zhen, C., Shi-Chu, L., & Yang-Lin, L. (2008). Physiological and biochemical properties of Bruguiera gymnorrhiza seedlings under cadmium stress. Chinese Journal of Ecology, 27(5), 762-766.

Yong, X., & Youshao, W. (2022). Physiological response characteristics of four mangrove plants seedlings to heavy metal stress. Journal of Tropical Oceanography, 41(6), 28-34. https://doi.org/10.11978/2021118

Yunus, K., Zuraidah, M. A., & John, A. (2020). A review on the accumulation of heavy metals in coastal sediment of Peninsular Malaysia. Ecofeminism and Climate Change, 1(1), 21-35. https://doi.org/10.1108/EFCC-03-2020-0003

Zhang, F. Q., Wang, Y. S., Lou, Z. P., & Dong, J. D. (2007). Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere, 67(1), 44-50. https://doi.org/10.1016/j.chemosphere.2006.10.007

Zhang, J. E., Jin-Ling, L., Ying, O., Bao-Wen, L., & and Zhao, B. L. (2011). Physiological responses of mangrove Sonneratia apetala Buch-Ham plant to wastewater nutrients and heavy metals. International Journal of Phytoremediation, 13(5), 456-464. https://doi.org/10.1080/15226511003671395

Zhou, Y. Y., Wang, Y. S., & Inyang, A. I. (2021). Ecophysiological differences between five mangrove seedlings under heavy metal stress. Marine Pollution Bulletin, 172, 112900. https://doi.org/10.1016/j.marpolbul.2021.112900

Downloads

Published

2025-11-09