บททบทวนเรื่องชีวเคมีของการสร้างแก๊สชีวภาพ

ผู้แต่ง

  • KYU KYU TIN -PhD candidate
  • Namrata Agrahari ศูนย์พัฒนาชนบท สถาบันเทคโนโลยีแห่งอินเดีย เดลี
  • Wirach Taweepreda หลักสูตรวิทยาศาสตร์พอลิเมอร์ สาขาวิทยาศาสตร์กายภาพ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์
  • Anil Kumar ภาควิชาวิศวกรรมเครื่องกล มหาวิทยาลัยเทคโนโลยีเดลี ประเทศอินเดีย

คำสำคัญ:

Keywords: Anaerobic, Biogas, Biochemical Process, Digestion

บทคัดย่อ

การย่อยสลายแบบไม่ใช้ออกซิเจนหรือการย่อยสลายทางชีวภาพแบบไม่ใช้ออกซิเจนเป็น กระบวนการทางชีวเคมีและชีวภาพที่ซับซ้อนผ่านความร่วมมือกันของสิ่งมีชีวิตหลายสายพันธุ์ ผลลัพธ์ของกระบวนการคือ “แก๊สชีวภาพ” ที่ส่วนใหญ่ประกอบไปด้วยแก๊สมีเทนและแก๊สคาร์บอนไดออกไซด์ ซึ่งสามารถนำไปเป็นเชื้อเพลิงไฟฟ้าและแก๊สหุงต้ม ทั้งนี้ เพื่อลดการปล่อยแก๊สเรือนกระจกและเสนอเทคโนโลยีหมุนเวียนที่มีราคาถูกสำหรับเศรษฐกิจเชิงสังคมได้ โดยที่กระบวนการย่อยสลายแบบไม่ใช้ ออกซิเจน ประกอบด้วย ขั้นตอนทางชีววิทยาที่หลากหลาย ที่มีแบคทีเรียหลายชนิดเกี่ยวข้อง ดังนั้น จึงจำเป็นต้องมีระบบควบคุมและติดตามที่มีประสิทธิภาพในการทำให้กระบวนการดังกล่าวเกิดประโยชน์สูงสุด และได้มาซึ่งแก๊สชีวภาพที่ต้องการการทบทวนวรรณกรรมชิ้นนี้ นำเสนอข้อมูลพื้นฐานของกระบวนการชีวเคมีของการย่อยสลายแบบไม่ใช้ออกซิเจนเพื่อสร้างแก๊สชีวภาพที่ต้องการ นอกจากนี้ยังมีการพิจารณา เรื่องการวัดวัฏจักรชีวิตของแก๊สชีวภาพเพื่อลดปริมาณแก๊สคาร์บอนไดออกไซด์ จากข้อมูลที่มีอยู่ องค์ประกอบ ของพอลิเมอร์ชีวภาพที่ซับซ้อน จากวัตถุดิบส่งผลต่อเกิดแก๊สชีวภาพ โดยเฉพาะอย่างยิ่งไขมันและโปรตีน ระดับสูงสุดทำให้มีช่วงหน่วงเวลา นานกว่าการมีคาร์โบไฮเดรทระดับสูงในสารตั้งต้น

เอกสารอ้างอิง

Ali Shah, F., Mahmood, Q., Maroof Shah, M., Pervez, A., & Ahmad Asad, S.: Microbial ecology of anaerobic digesters: the key players of anaerobic. The Scientific World Journal, 183752(2014).

Khanal, S.K.: Aaerobic Biotechnology for Bioenergy Production: Principles and Applications, John Wiley & Sons, Inc., Ames, IA, 2008.

Mackie I. and Bryant P.: 1995. Anaerobic digestion of cattle waste at mesophilic and thermophilic temperature. Applied Microbiological Biotechnology. Issue 43: 346-350(1995).

Pramanik,S.K, Suja,F.B., Zain,S.M., . Pramanik,B.K.: The anaerobic digestion process of biogas production from food waste:Prospects and constraints. Bioresource Technology Reports 8 .100310. (2019).

Atelge, Rasit & Atabani (A.E. Atabani), Abdulaziz & Banu, Rajesh & Krisa, David & Kaya, Mustafa & Eskicioglu, Cigdem & Kumar, Gopalakrishnan & Lee, Changsoo & Yıldız, Yalçın & Ünalan, Sebahattin & Ranganathan, Mohanasundaram & Duman, Fatih.; A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel. 270. 117494(2020).

Adekunle, K. and Okolie, J.; A Review of Biochemical Process of Anaerobic Digestion. Advances in Bioscience and Biotechnology, 6, 205-212(2015).

Angelidaki, I.; Karakashev, D.; Batstone, D.J.; Plugge, C.M.; Stams, A.J. Biomethanation and its potential.Methods Enzym. 494, 327–351(2011).

E Instruments International. Biomass to Biogas-anaerobic Digestion. Available online: http://www.e-inst.com/biomass-to-biogas (accessed on 15 November 2018).

Khan M, Ngo HH, Guo W, Liu Y, Nghiem LD, Hai FI, Deng L,Wang J, Wu Y.: Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion. Bioresour Technol 219:738–748(2016).

Passos F, Ortega V, Donoso-Bravo A.: Thermochemical pretreatment and anaerobic digestion of dairy cow manure: experimental and economic evaluation. Bioresour Technol .227:239-246(2017).

Mancini G, Papirio S, Lens PN, Esposito, G.: Increased biogas production from wheat straw by chemical pretreatments. Renew Energy 119:608–614(2018).

Ge, X., Matsumoto, T., Keith, L., Li, Y.: Biogas energy production from tropical bio-mass wastes by anaerobic digestion. Bioresour. Technol. 169, 38-44(2014).

Karakashev D, Batstone DJ, Angelidaki I.: Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol. 71(1):331-338(2005).

Sridevi, • & Srinivasan, Sv.:Studies on Conversion of Carbohydrate Content in the Mixture of Vegetable Wastes into Biogas in a Single Stage Anaerobic Reactor. Research Journal of Chemical Sciences. 2. 66-71(2012).

Suhartini, S., Nurika, I., Paul, R. et al.: Estimation of Biogas Production and the Emission Savings from Anaerobic Digestion of Fruit-based Agro-industrial Waste and Agricultural crops residues. Bioenerg. Res. 14, 844–859 (2021).

Atelge, M.R. Atabani, A.E. Rajesh Banu, J. David Krisa, M. Kaya, Cigdem Eskicioglu, Gopalakrishnan Kumar, Changsoo Lee, Y.Ş. Yildiz, S. Unalan, R. Mohanasundaram, F. Duman, A.;critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery,Fuel,Volume 270, 117494(2020).

Bakhov ZhK, Korazbekova KU, Lakhanova KM.: The kinetics of methane production from co-digestion of cattle manure. Pak J Biol Sci. Aug;17(8):1023-9(2014).

Zhang C, Su H, Baeyens J, Tan, T.: Reviewing the anaerobic digestion of food waste for biogas production. Renew Sust Energ Rev 38:383–392(2014)

Rodriguez, C.,A. Alaswad, J. Mooney, T. Prescott, A. O.: Pre-treatment techniques used for anaerobic digestion of algae, Fuel Process. Technol 138 .765-779(2015).

Ahlberg-Eliasson K, Westerholm M,Isaksson S and Schnürer, A.: Anaerobic Digestion of Animal Manure and Influence of Organic Loading Rate and Temperature on Process Performance, Microbiology, and Methane Emission From Digestates. Front. Energy Res. 9:740314(2021).

Yang Y, Xu M, Wall JD, Hu Z.: Nanosilver impact on methanogenesis and biogas production from municipal solid waste. Waste Manag. May;32(5):816-25(2012).

Zaidi, A.A., Ruizhe, F., Malik, A., Khan, S.Z., Bhutta, A.J., Shi, Y., & Mushtaq, K.:Conjoint effect of microwave irradiation and metal nanoparticles on biogas augmentation from anaerobic digestion of green algae. International Journal of Hydrogen Energy. 44. 14661-14670. (2019).

Zeb, Iftikhar & Ma, Jingwei & Mehboob, Farrakh & Kafle, Gopi & Amin, Bilal & Nazir, Rashid & Ndegwa, Pius & Frear, Craig. Kinetic and microbial analysis of methane production from dairy wastewater anaerobic digester under ammonia and salinity stresses. Journal of Cleaner Production. 219. 10.1016(2019).

Hasan, Masrihan & Aqsha, Aqsha & Adi Putra, Zulfan & Bilad, Muhammad & Sapiaa, Nik & Wirzal, Mohd Dzul Hakim & Tijani, Mansour. Biogas production from chicken food waste and cow manure via multi-stages anaerobic digestion. AIP Conference Proceedings. 2016. 020011. 10.1063/1.5055413(2018).

Wang D, Yang X, Tian C, Lei Z, Kobayashi N, Kobayashi M, Adachi Y, Shimizu K, Zhang Z .: Characteristics of ultra-fine bubble water and its trials on enhanced methane production from waste activated sludge. Bioresour Technol. 273:63-69 (2019).

Yang, Xiaojing & Nie, Jingmin & Wang, Di & Zhao, Ziwen & Kobayashi, Motoyoshi & Adachi, Yasuhisa & Shimizu, Kazuya & Lei, Zhongfang & Zhang, Zhenya :. Enhanced hydrolysis of waste activated sludge for methane production via anaerobic digestion under N2-nanobubble water addition. Science of The Total Environment. 693(2019).

Minamikawa, K., Takahashi, M., Makino, T., Tago, K., Hayatsu, M :. Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy. Environ. Res. Lett. 10, 084012(2015).

Ebina, K., Shi, K., Hirao, M., Hashimoto, J., Kawato, Y., Kaneshiro, S.,Morimoto, T., Koizumi, K., Yoshikawa, H:. Oxygen and Air Nanobubble Water Solution Promote the Growth of Plants, Fishes, and Mice. PLoS One 8,65339(2013).

Wang, Xuezhi & Yuan, Tian & Lei, Zhongfang & Kobayashi, Motoyoshi & Adachi, Yasuhisa & Shimizu, Kazuya & Lee, Duu-Jong & Zhang, Zhenya :. Supplementation of O2-containing gas nanobubble water to enhance methane production from anaerobic digestion of cellulose. Chemical Engineering Journal. 398. 125652(2020).

Hu, L., Xia, Z:. Application of ozone micro-nano-bubbles to groundwater remediation. J. Hazard. Mater. 342, 446-453(2018).

Wang, X., Yuan, T., Guo, Z., Han, H., Lei, Z., Shimizu, K., Zhang, Z., & Lee, D :. Enhanced hydrolysis and acidification of cellulose at high loading for methane production via anaerobic digestion supplemented with high mobility nanobubble water. Bioresource technology, 297, 122499 (2019).

Hou, Tingting & Zhao, Jiamin & Lei, Zhongfang & Shimizu, Kazuya & Zhang, Zhenya :.Enhanced energy recovery via separate hydrogen and methane production from two-stage anaerobic digestion of food waste with nanobubble water supplementation. Science of The Total Environment. 761. 143234(2020).

Budzianowski, Wojciech M. and Karol, P.: “Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant configurations and operating pressures.” Renewable & Sustainable Energy Reviews 68: 852-868(2017).

Xiao, C., Fu., Liao, Q., Huang,Y., Xia, A., Chen, H., Zhu, X Life cycle and economic assessments of biogas production from microalgae biomass with hydrothermal pretreatment via anaerobic digestion, Renewable Energy, 151, 70-78(2020).

Singh, A.D., Upadhyay A., Shrivastava S, Vivekanand V.: Life-cycle assessment of sewage sludge-based large-scale biogas plant. Bioresource Technology. 309:123373(2020).

Li Y, Zhao J, Krooneman J, Euverink GJW.: Strategies to boost anaerobic digestion performance of cow manure: Laboratory achiev ements and their full-scale application potential. Sci Total Environ. Feb 10;755(Pt 1):142940(2021).

Nur Izzah Hamna A. Aziz, Marlia M. Hanafiah, (2020).Life cycle analysis of biogas production from anaerobic digestion of palm oil mill effluent, Renewable Energy, Volume 145,Pages 847-857,ISSN 0960-1481,https://doi.org/10.1016/j.renene.2019.06.084

Bruno M, Marchi M, Ermini N, Niccolucci V, Pulselli FM. Life Cycle Assessment and Cost–Benefit Analysis as Combined Economic–Environmental Assessment Tools: Application to an Anaerobic Digestion Plant. Energies. 2023; 16(9):3686. https://doi.org/10.3390/en16093686

M. Rasapoor, B. Young, R. Brar, A. Sarmah, W.-Q. Zhuang, S. Baroutian, 2020,Recognizing the challenges of anaerobic digestion: Critical steps toward improving biogas generation,Fuel,Volume 261, 116497,ISSN 0016-2361,https://doi.org/10.1016/j.fuel.2019.116497.

Asfaw, Ashenafi & Benti, Natei Ermais. (2022). Challenges and Solutions in Biogas Technology Adoption in Ethiopia: A Review. Ethiopian Journal of Science and Sustainable Development. 9. 18. 10.20372/ejssdastu:v9.i2.2022.484.

Saidmamatov, Olimjon & Rudenko, Inna & Baier, Urs & Khodjaniyazov, Elbek. (2021). Challenges and Solutions for Biogas Production from Agriculture Waste in the Aral Sea Basin. Processes. 9. 199. 10.3390/pr9020199.

Uddin, Md Mosleh and Wright, Mark Mba. "Anaerobic digestion fundamentals, challenges, and technological advances" Physical Sciences Reviews, 2022. https://doi.org/10.1515/psr-2021-0068

ดาวน์โหลด

เผยแพร่แล้ว

11-11-2025

รูปแบบการอ้างอิง

TIN, K. K., Agrahari, N., Taweepreda, W., & Kumar, A. (2025). บททบทวนเรื่องชีวเคมีของการสร้างแก๊สชีวภาพ. วารสารพัฒนบริหารศาสตร์, 65(2), 132–162. สืบค้น จาก https://so04.tci-thaijo.org/index.php/NDJ/article/view/269246