FORECASTING THE VALUE OF ONLINE SHOPPING IN THAILAND
Main Article Content
Abstract
The objective of this research was to forecast the monthly value of online purchases in Thailand over the next three years, data was collected from January 2015 to December 2019 and used in the forecast by the ARIMA model. Simple Exponential Smoothing or Single Exponential Smoothing (SES) Holt and Winter smoothing method (Holt-Winters Smoothing Method) and Gaussian process. To find the most suitable model for forecasting and Predict the value of online purchases in the next 3 years. Gaussian forecasting process is suitable and efficient for predicting Results were closer than other models of forecasts, with Mean Absolute Deviation, MAD, and lowest Mean Absolute Percentage Error, MAPE.
Forecasting Monthly Value of Online Shopping in Thailand for the Next 3 Years Using a Gaussian Process The forecast value of online purchases at the end of 2022 is approximately 2,223,809.58 million baht, an increase from year 2009 on average 216,456.88 million baht or an average 78.51 percent per year. Mean Absolute Deviation, MAD was 5.68 and Mean Absolute Percentage Error, MAPE was 0.27
Article Details
References
ศูนย์วิเคราะห์เศรษฐกิจทีเอ็มบี. (2562). ข้อมูลวิเคราะห์ตลาด E-Commerce. สืบค้นเมื่อ, 15 ก.พ. 2562, จาก http://www.tmbbank.com
สิทธิพล วิบูลย์ธนากุล.(2563). สำรวจพฤติกรรมผู้บริโภคครึ่งปีแรก 2563. สืบค้นเมื่อ, 20 ก.ค. 2563, จาก http://www.marketingoops.com)
สุรางคณา วายุภาพ (2562). รายงานผลการสำรวจมูลค่าพาณิชย์อิเล็กทรอนิกส์ในประเทศไทยปี 2562 (พิมพ์ครั้งที่ 1).กรุงเทพมหานคร: สำนักงานพัฒนาธุรกรรมทางอิเล็กทรอนิกส์.
Blum, M., & Riedmiller, M. A. (2013, April). Optimization of Gaussian process hyperparameters using Rprop. In ESANN (pp. 339-344).
Hachino, T., Okubo, S., Takata, H., Fukushima, S., & Igarashi, Y. (2015). Improvement of Gaussian process predictor of electric power damage caused by Typhoons considering time-varying characteristics. International Journal of Electronics and Electrical Engineering, 4(3), 263-268.
Senanayake, R., O'Callaghan, S., & Ramos, F. (2016, March). Predicting spatio-temporal propagation of seasonal influenza using variational Gaussian process regression. In Proceedings of the AAAI Conference on Artificial Intelligence , 30(1), 3901-3907.
Rasmussen, C. E. (2003, February). Gaussian processes in machine learning. In Summer school on machine learning (pp. 63-71). Springer, Berlin, Heidelberg.
Wu, Q., Law, R., & Xu, X. (2012). A sparse Gaussian process regression model for tourism demand forecasting in Hong Kong. Expert Systems with Applications, 39(5), 4769-4774.